Accuracy enhancement of coordinate estimation in dual-polarization radio communication systems
Abstract
One of the most critical parameters in land mobile radio communication systems is its reliability in terms of coverage and time. The existing methods of reliability assessment involve mainly radio wave propagation characteristics and mainly in this radio communication coverage area, i.e. the area (spatial) reliability of radio communication. However, reliability assessment methods for radio communication need to be refined (updated) in current and newly created mobile radio communication systems with introduced self-controlled system operation methods due to traffic changes both in the radio channel (adaptively changing radio signal parameters) and in the radio communication routes. This requires extra research to define and keep records of these innovations for communication reliability assessment. That said each innovation should be estimated as a certain independent factor (parameter), which could be characterized mostly by a statistical (probabilistic) value. And each such value (regardless of other similar values) is taken into account when estimating the final reliability of radio communication based on the principles similar to the existing assessment principles for the radio communication area reliability. This paper not only defines extra research trends of these innovations’ effect on today’s mobile radio communication systems but it also examines the principles of the existing assessment methods for communication reliability, upon which and using which it is possible to determine optional parameters of such innovations for the final updated assessment of radio communication reliability. This approach can also be useful to assess self-organizing radio communication systems and to determine special measures for maintaining specified requirements for stability and fail-safety of various radio networks.