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Аннотация: В данной статье проводится анализ вычислительной эффективности различных известных и 
новой предлагаемой процедуры определения полинома локаторов ошибок в процессе декодирования ко-
дов Боуза — Чоудхури — Хоквингема с использованием алгоритма Питерсона — Горенстейна — Цирлера 
(ПГЦ). Вначале выполняется теоретический анализ вычислительной сложности рассматриваемых методов. 
На основе данного анализа осуществлена реализация и моделирование соответствующих алгоритмов деко-
дирования в среде MATLAB, что позволило провести оценку и сравнение степени оптимальности рассмот-
ренных методов применительно к декодированию конкретных кодов БЧХ. Научная новизна исследования 
заключается в повышении вычислительной эффективности алгоритма декодирования ПГЦ путём использо-
вания особой структуры синдромной матрицы, которая обладает свойствами тёплицевой матрицы. Все ис-
следованные методы декодирования показали сопоставимую эффективность в исправлении ошибок. Одна-
ко предлагаемый метод, основанный на алгоритме Левинсона, разработанном при использования особых 
свойств синдромной матрицы, продемонстрировал превосходящую вычислительную эффективность. 
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Введение 

При передаче информации по физическим 
каналам связи, таким, как каналы с 
аддитивным белым гауссовским шумом 
(АБГШ) или каналы с замираниями 
(фейдингом), информационные системы 
подвергаются воздействию искажающих 
факторов. Это приводит к возникновению 
ошибок в передаваемых данных и, как 
следствие, к снижению общей энергетической 
эффективности. Для противодействия этим 
негативным явлениям и повышения 
надёжности передачи данных широко исполь-

зуются помехо-устойчивые коды, 
представляющие собой эффективный 
инструмент обеспечения качества 
функционирования каналов связи. Среди 
различных типов кодов исправления ошибок 
коды Боуза — Чоудхури — Хоквингема (БЧХ) 
выделяются своей способностью исправлять 
случайные ошибки и значительной гибкостью 
в практическом применении. Коды БЧХ 
находят широкое применение во многих 
областях, включая системы беспроводной 
связи, спутниковое телевидение и устройства 
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хранения данных (например, USB-накопители, 
SD-карта, SSD-накопитель) [1, 2]. Помимо 
этого, они интегрированы в стандарты 
цифрового вещания, такие, как DVB-S2 [3]. 
Основной целью исследования является 
разработка и оценка процедур, направленных 
на повышение вычислительной эффективности 
процесса декодирования, в частности, на этапе 
определения позиций ошибок путём нахожде-
ния полинома локаторов ошибок.  
 

1. Обзор алгоритма декодирования ПГЦ 
Среди множества разработанных методов 
декодирования алгоритм Питерсона —
Горенстейна — Цирлера (ПГЦ) [4, 5] является 
одним из основополагающих и наиболее 
признанных решений. Ключевой принцип 
алгоритма ПГЦ для локализации ошибок 
заключается в формировании и последующем 
решении системы линейных алгебраических 
уравнений (СЛАУ). Данная система уравнений 
строится на основе вычисленных значений 
синдромов, а количество уравнений в ней 
напрямую зависит от максимальной 
корректирующей способности t  исполь-
зуемого кода БЧХ.  

Предположим, что кодовое слово 
представлено полиномом ( )c x  с 
коэффициентами из конечного поля ( )GF q , 
полином ошибок обозначен как ( )e x , а 
принятая на приёмной стороне 
последовательность — как ( )x . Если в канале 
передачи возникают ошибки, то значения 

( )j   при 1,2, 2j t   отражают присутствие 
полинома ошибок ( )e x . Именно эти значения 
и используются для формирования синдромов 
[6–8]:  

( ) ( ) ( ) 0 ( ) ( ).j j j j j
jS c e e e            

Пусть в процессе передачи данных 
произошло   ошибок, где t  . Положения 
этих ошибок обозначим как 1 2{ , , , }i i i . В 
этом случае компоненты синдрома [6–8] 
вычисляются следующим образом: 

1 2
1 2

,i ji j i j
j i i iS e e e 


       

где 
hie  представляет собой значение в положе-

нии ошибки h . 
Поставим hi

hX   вместо прямого опреде-
ления локаторов ошибок hX , алгоритм 

нацелен на поиск их обратных величин 1
hX  . 

Это достигается путём нахождения 
коэффициентов особого полинома, известного 
как полином локаторов ошибок ( )x . Данный 
полином ( )x  строится так, что его корнями 

служат именно эти обратные величины 1
hX   

[6–8]: 

1
1

( ) (1 ) 1 .j
j

x xX x x






          

Коэффициенты полинома локаторов 
ошибок ( )x  определяются путём решения 
СЛАУ. Данная система строится на основе 
значений синдромов jS  с применением 

тождеств Ньютона: 

  

11 2
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

. (1) 

Из (1) возможно определение набора 
коэффициентов 1 2{ , , , }    полинома лока-

торов ошибок. После того, как полином ( )x  
определён, его корни позволяют найти элементы 
— локаторы ошибок hX . Для этой цели часто 
применяется алгоритм поиска Чиня [9].  

 
2. Метод определения полинома локаторов 

ошибок на основе LU-разложения 
В первую очередь, для определения 
коэффициентов ( )x  будет рассмотрен один 
из классических подходов, а именно метод, 
основанный на методе Гаусса [10]. В этой ста-
тье данный подход реализован с помощью 
техники LU-разложения, которое по своей сути 
является матричной формой алгоритма Гаусса. 
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Как следует из (1), коэффициенты ( )x  можно 
найти, умножив обратную матрицу к 
синдромной матрице на вектор ,S  

 1S S 
  . (2) 

Таким образом, ключевой задачей 
становится вычисление 1S  . В общем случае, 
когда матрица S  не обладает специальной 
структурой, для её обращения часто прибегают 
к методу LU -разложения. Этот метод 
включает применение процедуры гауссова 
исключения для получения матриц L  и U . 
При LU -разложении квадратная матрица S  
разлагается на произведение нижней 
треугольной матрицы L  и верхней 
треугольной матрицы U , то есть S LU : 

11 12 1

221 22
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1 0 0
1 0 0

, .

1 0 0
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ul u

L U

l l u

  
  
      
     

   





    

 

 

где ijl  — поддиагональные элементы и множи-

тели, используемые в процессе гауссова 
исключения; iju  — наддиагональные элемен-

ты, получаемые в ходе гауссова исключения. 
По сути LU-разложение представляет собой 

процесс приведения матрицы S  к 
верхнетреугольному виду U  путём 
выполнения последовательности элемен-
тарных строчных преобразований. 
Теоретические основы данного подхода и 
методика построения матриц-сомножителей L  
и U  подробно изложены в [11]. Конкретный 
алгоритм для вычисления элементов этих 
матриц представлен далее: 

function [L,U] = LU_Factorization(S) 
Вход: матрица S, U=S, L=I (единичная матрица) 
Выход: матрицы L,U.   
for k=1:n-1          
    for i=k+1:n      
       L(i,k)= U(i,k)/U(k,k);    
       U(i,k:n)= U(i,k:n)-L(i,k)*U(k,k:n); 
       U(i,k)=0; 
    end 
end 
При стандартном LU-разложении, если на 

некотором k-м шаге процесса гауссова 

исключения диагональный элемент 
оказывается равным нулю, дальнейшее 
выполнение алгоритма становится 
невозможным. Для устранения этой проблемы 
и одновременного повышения численной 
устойчивости широкое распространение 
получил алгоритм LU-разложения с выбором 
ведущего элемента . 

Согласно [11], суть данного алгоритма 
заключается в том, что на каждом k-м шаге 
процесса исключения выполняется поиск 
элемента с наибольшим абсолютным 
значением в текущем k-м столбце, начиная с  
k-й строки и до конца столбца. Если этот 
максимальный элемент по модулю находится 
не в текущей k-й строке, а в некоторой строке 
p  (где p k ), то строки k  и p  меняются 

местами. После такой перестановки процесс 
гауссова исключения продолжается обычным 
образом: производятся элементарные строчные 
преобразования для обнуления элементов, 
расположенных под новым ведущим 
элементом в k-м столбце, как это было описано 
ранее. В результате общее разложение 
принимает вид PS LU  где P  — это матрица 
перестановки. Алгоритм этого процесса можно 
представить следующим образом: 
function [L,U, P] = performPartialPivotingLU(S)          
  for k = 1:n-1  
    [~, max_idx_rel] = max(abs(U(k:n, k)));   
    max_idx_abs = max_idx_rel + k - 1;      

 if max_idx_abs ~= k 
  U([k, max_idx_abs], k:n) = U([max_idx_abs, k], k:n);  
  P([k, max_idx_abs], :) = P([max_idx_abs, k], :);      

   L([k, max_idx_abs], 1:k-1) = L([max_idx_abs, k], 1:k-1);  
 end 

  end 
end 

Нахождение обратной матрицы 1S   
эквивалентно решению системы уравнений 
Sx I  или PSx P , где I - единичная матри-
ца. После того, как выполнено разложение 
PS LU , система уравнений PSx P  
преобразуется к виду LUx P . Для 
нахождения каждого столбца jx  обратной 

матрицы 1S   необходимо решить систему 
линейных уравнений: 
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 , 1,2, , .j jLUx P j n    (3) 

где jP  — j -й столбец матрицы перестановки 

P; n n  — размер матрицы S . 
Система уравнений (3) решается в два 

этапа: 
1. Пусть j jLUx P . Решение системы 

j jLy P  позволяет найти ромежуточный 

вектор jy . 

2. Решение систему j jUx y позволяет 

найти вектора jx . 

Первая система уравнений j jLy P  в 

матричной форме представляется следующим 
образом: 

( ) ( )
1 1
( ) ( )

21 2 2

( ) ( )
1 2

1 0 0
1 0

.

1

j j

j j

j j
n n n n

y P
l y P

l l y P

    
    
         
            





   



 

Компоненты вектора ( )j
iy  вычисляются 

последовательно сверху вниз (метод прямой 
подстановки) следующим образом: 

- при 1i   (первая строка): ( ) ( )
1 1

j jy P  (так 
как 11 1l  , а остальные внедиагональные 
элементы первой строки матрицы L  равны 
нулю); 

- при 2i   имеем ( ) ( ) ( )
21 1 2 2

j j jl y y P    и 

поскольку ( )
1

jy  уже известен, 

вычисляем ( ) ( ) ( )
2 2 21 1

j j jy P l y  ; 

- при i = 3 имеем ( ) ( ) ( ) ( )
31 1 32 2 3 3

j j j jl y l y y P   , 

вычисляем ( ) ( ) ( )
3 3 31 1 32 2( ).j j j jy P l y l y    

В общем виде для i  от 1 до n : 
1

( ) ( ) ( )

1
.

i
j j j

i i ik k
k

y P l y




   

После того как вектор 

 ( ) ( ) ( )
1 2, , ,

Tj j j
j ny y y y   определён, приступают 

к решению системы уравнений с 

верхнетреугольной матрицей j jUx y  для 

нахождения вектора  ( ) ( ) ( )
1 2, , ,

Tj j j
j nx x x x  . В 

матричной форме данная система уравнений 
имеет следующий вид: 

( ) ( )
1 111 12 1
( ) ( )

222 2 2

( ) ( )

0
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j j
n

j j
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j j
nn n n

x yu u u
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            
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

 

Компоненты ( )j
ix  вектора jx  вычисляются 

последовательно в порядке снизу вверх (метод 
обратной подстановки): 

- при i n  имеем ( ) ( )j j
nn n nu x y , откуда  

( )
( )

j
j n

n
nn

y
x

u
 ; 

- при 1i n   имеем  
( ) ( ) ( )

1, 1 1 1, 1
j j j

n n n n n n nu x u x y      ; 

- поскольку ( )j
nx известен, находим: 

( ) ( )
1 1,( )

1
1, 1

.
j j

n n n nj
n

n n

y u x
x

u
 


 


  

В общем виде, для , 1, ,1i n n    

компоненты ( )j
ix  вычисляются по формуле: 

( ) ( ) ( )

1

1 ( ).
n

j j j
i i ik k

k iii
x y u x

u  

    

После выполнения двух этапов решения для 
конкретного j -го получают вектор 

 ( ) ( ) ( )
1 2, , ,

Tj j j
j nx x x x  . Этот вектор и является 

j -м столбцом искомой обратной матрицы 
1S  . Повторение данной процедуры для всех 

n  столбцов (т.е. для 1,2, ,j n  ) позволяет 

полностью построить матрицу 1.S   Имея 1S  , 
можно затем применить формулу (2) для 
нахождения коэффициентов полинома 
локаторов ошибок, после чего использовать 
ранее описанный алгоритм для осуществления 
процесса декодирования кодов БЧХ. 

Разложение матрицы S  на произведение 
нижней треугольной матрицы L  и верхней 
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треугольной матрицы U  требует выполнения 
3

3
n  операций умножения и 

3

3
n  операций 

сложения. Решение двух систем треугольных 
уравнений ( j jLy P , j jUx y ) требует 

выполнения примерно 2n  операций умно-
жения и 2n  операций сложения. Эта процедура 
повторяется для всех n  столбцов обратной 
матрицы, поэтому общее количество операций 
для определения обратной матрицы составляет 

3n  операций умножения и 3n  операций 
сложения. Следовательно, общая 
вычислительная сложность метода нахождения 
обратной матрицы путем LU -разложения и 
последовательного решения систем составляет 

3(8 / 3)O n , что в общем виде представляется 

как 3( )O n . 
 

4. Метод определения полинома локаторов 
ошибок на основе рекуррентного алгоритма 

Левинсона 
Соотношение (1) можно переписать в 
следующем виде: 

 

111 1

1 2 22

2 1 2 2 2

SS S S
S S SS

S S S S

 

  

   



 

 

    
              
             





  



. (4) 

Исходная синдромная матрица 
трансформируется в тёплицеву матрицу (4). 
Тёплицевой называется матрица, в которой все 
элементы на каждой диагонали, параллельной 
главной, одинаковы. Для тёплицевой матрицы 
A  её элемент ijA  зависит только от разности 

индекса строки i  и индекса столбца j , то есть 

ij i jA a  . Благодаря этому свойству, 

квадратная тёплицева матрица размера n n  
полностью задаётся 2 1n   своими 
независимыми элементами. Общий вид 
тёплицевой матрицы:  

 

0 1 1

0 21

1 2 0

.

n

n

n n

a a a
a aa

A

a a a

  

 

 

 
 
 
 
  
 





  



 (5) 

Для удобства изложения алгоритма будем 
рассматривать (5) как синдромную. Поскольку 
A  является тёплицевой матрицей, процедура 
вычисления её обратной матрицы 1A  
основывается на использовании присущих 
тёплицевым матрицам математических свойств 
и их особой структуры. 

Будем исходить из предположения, что все 
ведущие миноры матрицы A  отличны от нуля. 
Это является условием её невырожденности и 
позволяет применять определённые методы 
обращения. Ведущая главная подматрица kA  
размера ( 1) ( 1)k k    матрицы A  имеет 
следующий вид: 

0 1

0 11

1 0

k

k
k

k k

a a a
a aa

A

a a a

 

 



 
 
 
 
  
 





  



. 

Для ведущей подматрицы kA  определяются 
векторы  

 ( ) ( ) ( ) ( )
0 1, , ,

Tk k k k
kx x x x  , 

 ( ) ( ) ( ) ( )
0 1, , ,

Tk k k k
ky y y y  . 

Утверждается, что эти векторы, 
представляющие собой первый и последний 
столбцы обратной матрицы 1,kA  позволяют 
полностью её определить. Значения векторов 

( )kx  и ( )ky  вычисляются рекуррентно на 
основе ряда вспомогательных величин. Эти 
рекуррентно вычисляемые векторы служат 
основой для последовательного построения 
полной обратной матрицы 1A  на последнем 
этапе, при 1k n  . Как показано в [12], 

векторы ( )kx  и ( )ky  могут быть представлены 
в виде линейной комбинации двух других 
векторов: 
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( 1)
( )

( 1)

( 1)
( )

( 1)

0
,

0

0
,

0

k
k

k

k
k

k

xx
y

xy
y

 

 









   
    
   
   

    
   

 (6) 

где ( 1)kx   и ( 1)ky   — это соответственно, 
первый и последний столбцы обратной 

матрицы 1
1kA
  и , ,    — коэффициенты ли-

нейной комбинаций. Для их нахождения 
приведённые выше векторные уравнения (6) 
умножаются слева на матрицу kA : 

 

( 1)
( )

( 1)

( 1)
( )

( 1)

0
,

0

0
.

0

k
k

k k k k

k
k

k k k n

xA x A A
y

xA y A A
y

 

 









   
    

   
   

    
   

 (7) 

Поиск первого и последнего столбцов 
обратной матрицы по существу сводится к 
решению СЛАУ. В частности, векторы ( 1)kx   и 

( 1)ky   являются решениями систем: 

 ( 1)
1 1,k

kA x e
  ( 1)

1 ,k
k kA y e
    (8) 

где 1 , ke e  — это соответственно первый и 
последний столбцы единичной матрицы I  
размера k k  (матрица 1kA   имеет размер 
k k ). 

Применяем (8) в (7), получаются: 

  ( ,0, ,0) 1,0, ,0, TT F     

 ( ,0, ,0,1) ,TG    (9) 

 (0,0, , ) 1,0, ,0, TT F     

( ,0, ,0,1) .TG   
Из (9) определены  

 1 FG   , F   , .G    (10) 
Тогда 

 ( 1) ( 1) ( 1)
0 1 0 1 1... ,k k k

k k kF a x a x a x  
       (11) 

( 1) ( 1) ( 1)
1 0 2 1 1... .k k k

k kG a y a y a y  
        

Векторы ( )kx , ( )ky  по (6) представляются в 
виде: 

   ( ) ( ) ( ) ( 1) ( 1) ( 1)
0 1 0 1 1, ,..., , ,... ,0

T Tk k k k k k
k k kx x x x x x r  

   

 ( 1) ( 1) ( 1)
0 1 10, , ,... ,

Tk k k
k ky y y s  
  

   ( ) ( ) ( ) ( 1) ( 1) ( 1)
0 1 0 1 1, ,... , ,... ,0

T Tk k k k k k
k k ky y y x x x t  

   

 ( 1) ( 1) ( 1)
0 1 10, , ,... .

Tk k k
k ky y y r  
  

Коэффициенты определяются как:  

1 / (1 ),k k kr F G   ,
(1 )k k k

k k
s r F

F G


  


 

.
(1 )k k k

k k
t r G

F G


  


 

Если векторы ( 1) ( 1), k kx y   заранее известны, 
то на основе (11), (10) вычисляются 
коэффициенты линейной комбинации , , ,    

а затем из них вычисляются векторы ( ) ( ),  k kx y . 

При 1k n   будут найдены ( 1) ( 1),n nx y   и 

обратная матрица 1
1nA
 . Таким образом, суть 

рекуррентного алгоритма построения обратной 

матрицы 1
kA  заключается в использовании и 

обновлении информации, полученной из 
обратной матрицы 1

1kA
 , вычисленной на 

предыдущем шаге. Конкретный рекуррентный 
алгоритм подробно представлен ниже: 

0 :k   
(0) (0)
0 0 01/ ;x y a   

1,..., 1:k n   

( 1) ( 1) ( 1) ( 1)
0 1 0 1 1

1
... ,

k
k k k k

k i k i k k k
i

F a x a x a x a x   
  



    
( 1) ( 1) ( 1) ( 1)

1 1 0 2 1 1
1

... .
k

k k k k
k i i k k

i
G a y a y a y a y   

     


      

1:k   
(0) (0)

1 1 0 1 1 0, ,F a x G a y   1 1 11 / (1 ),r F G   

1 1 1 1 1 1, .s r F t r G     

Осуществляется обновление:  (1) (1)
0 1, ,

T
x x  

 (1) (1)
0 1,

T
y y : 

(1) (0)
0 0

1 1(0)(1)
01

0
,

0
x x

r s
yx

     
               
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(1) (0)
0 0

1 1(0)(1)
01

0
.

0
y x

t r
yy

     
               

 

2 :k   
(1) (1) (1) (1)

2 2 0 1 1 2 1 0 2 1, ,F a x a x G a y a y      

2 2 2 2 2 2 2 2 21 / (1 ), , .r F G s r F t r G       
Осуществляется обновление: 

(2) (1)
0 0
(2) (1) (1)
1 1 2 0 2
(2) (1)
2 1

0

,
0

x x

x x r y s

x y

     
     

      
             

 

(2) (1)
0 0
(2) (1) (1)
1 1 2 0 2
(2) (1)
2 1

0

,
0

y x

y x t y r

y y

     
     

      
             

 

до тех пор, пока 1:k n   
( 1) ( 2)
0 0
( 1) ( 2)
1 1

1 1( 2)
0
( 2)( 1)

11

0

,

0

n n

n n

n nn

nn
nn

x x
x x r s

y

yx

 

 
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


    
    
         
    

         


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( 1) ( 2)
0 0
( 1) ( 2)
1 1

1 1( 2)
0
( 2)( 1)

11

0

.

0

n n

n n

n nn

nn
nn

y x
y x t r

y

yy

 

 

 




    
    
         
    

         



 
 

По завершении итерационного процесса 
вычисляются векторы:  

 ( 1) ( 1) ( 1) ( 1)
0 1 1, , , ,

Tn n n n
nx x x x   
 

 ( 1) ( 1) ( 1) ( 1)
0 1 1, , , .

Tn n n n
ny y y y   
    

Эти векторы играют ключевую роль в 
последующем построении всех остальных 
элементов обратной матрицы, что возможно 
благодаря специфическим свойствам 
тёплицевых матриц. Согласно [12], выражение 
для определения обратной матрицы 1A  имеет 
следующий вид: 

0 1 2 0

0 11 11 1
0

1 2 0 1

0 0

0 0

0 0

n n

n

n n n

x y y y
x yx y

A x

x x x y

 

 

  

  
  
           

 

 

  

 

 

 
1 1

0

1

2 3

0 0 0
0

0 0
0

0 0 0

n

n

n n

x x
y

x
y y





 

  
  
            

 



 

 

.  (12) 

Если целью является построение обратной 
матрицы 1A  путём поэлементного 
вычисления на основе формулы (12), то 
необходимо принимать во внимание 
вычислительную сложность такого подхода. 
Формирование обратной матрицы размера 
n n  общими методами обычно сопряжено с 

вычислительными затратами порядка 3( )O n . 
В работе [12] указывается, что если 

произвольная матрица может быть 
представлена в виде суммы t  слагаемых, 
каждое из которых является произведением 
верхнетреугольной и нижнетреугольной 
матриц, то это может свидетельствовать о её 
специфической структуре, допускающей 
применение более эффективных алгоритмов. 

( ) ( ) ( )( )
1 21

( )( ) ( ) ( )
12 1 1

( ) ( ) ( ) ( )
1 2 1 1

0

0 0

0

S S SS
n

SS S S
n

S S S S
n n

  

  

   



 

  
  
  
  
  

  
  



 

   

 

. 

Для элементов каждого слагаемого может 
быть записано: 

( ) ( )
, 1, 1

1
.

t
S S

i j i j i j
S

a a   


   

В рамках данной статьи основное внимание 
уделяется компонентам матрицы, которая 
представляет собой произведение одной пары 
специальных тёплицевых матриц: нижней 
треугольной ( )L u  и верхней треугольной 

( )U v . В этом частном рекуррентное 

соотношение для вычисления элементов ,i ja  

произведения ( ) ( )L u U v  значительно 
упрощается и принимает вид: 
 , 1, 1i j i j i ja a     . (13) 

Компоненты, формирующие 1A  в рамках 
такого представления, могут быть полностью 
вычислены посредством рекуррентного 
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соотношения (13). Из (12) определяют всю 
обратную матрицу 1A . Алгоритм (13) 
реализуется следующими конкретными 
шагами: 

function resultMatrix = com-
puteLU_Product(uVector, vVector, matrixSize) 

 Вход: 
 uVector: Вектор-столбец L(u), 
vVector: Вектор-строка U(v), 
 matrixSize: Размер квадратной матрицы 

(n*n) 
 Выход: 
 resultMatrix: L(u)U(v) 
 
%Шаг 1: Вычислить первую строку result-

Matrix 
firstU = uVector(1); % Первый элемент 

uVector 
for col = 1:matrixSize 
    resultMatrix(1, col) = firstU * vVector(col); 
end 
%Шаг 2: Вычислить первый столбец re-

sultMatrix 
firstV = vVector(1); % Первый элемент vVec-

tor 
for row = 2:matrixSize 
    resultMatrix(row, 1) = uVector(row) * 

firstV; 
end 
%Шаг 3: Вычислить оставшиеся элементы 
for row = 2:matrixSize 
 for col = 2:matrixSize 
  resultMatrix(row, col)= resultMatrix(row-

1,col-1)+... 
                                     + uVector(row) * vVec-

tor(col); 
  end 

      end 
end 

Процесс нахождения обратной матрицы 
1A  для тёплицевой матрицы размера n n  

включает два основных этапа: первый 
заключается в вычислении векторов 

( 1) ( 1),n nx y  , а второй — в построении всех 

элементов матрицы 1A . На первом этапе 
рекуррентный алгоритм вычисления векторов 

( 1) ( 1),n nx y   требует выполнения порядка 23n  

операций умножения и 22n  операций 

сложения. Второй этап, то есть восстановление 
полной матрицы 1A  по этим векторам, также 
оценивается примерно в 23n  умножений и 

23n  сложений. 
Таким образом, изложенный метод 

обращения тёплицевых матриц обладает 
общей вычислительной сложностью 2( )O n , 
что демонстрирует его существенное 
преимущество в эффективности по сравнению 
с общими методами обращения матриц, 

имеющими сложность 3( )O n . 
 

3. Результаты моделирования и их оценка 
После теоретического анализа и оценки 
вычислительной сложности двух подходов к 
декодированию кодов БЧХ на основе 
алгоритма ПГЦ следующим этапом является 
оценка их практической эффективности. 

Будет проведено сравнение эффективности 
исправления ошибок для двоичных кодов 
БЧХ (15,11)  с возможностью исправления 1t   

ошибки, БЧХ  15,7  с 2t   ошибками и 
БЧХ (15,5)  с 3t   ошибками. Декодирование 
этих кодов будет осуществляться посредством 
алгоритма ПГЦ, в котором полином локаторов 
ошибок будет вычисляться каждым из двух 
упомянутых методов. Также, для 
сопоставления будет оценена 
производительность стандартного алгоритма 
Берлекэмпа–Месси, используемого в качестве 
эталонного. Моделирование планируется 
провести по каналам передачи АБГШ с 
применением квадратурной фазовой 
манипуляции (QPSK). 

На рис. 1. представлены результаты по 
зависимости коэффициента битовых ошибок 
(BER, аббр. от англ Bit Error Rate) от 
отношения сигнал/шум (ОСШ/SNR, аббр. от 
англ Signal-to-Noise Ratio). Результаты 
моделирования показывают, что для одного и 
того же кода БЧХ и идентичных условий 
канала передачи, эффективность исправления 
ошибок при применении различных 



 
Радиотехнические и телекоммуникационные системы, 2025, №4     ISSN 2221-2574 
 

 
22 

исследуемых алгоритмов декодирования 
является сопоставимой во всём рассмотренном 
диапазоне ОСШ. Коды с большей конструк-
тивной корректирующей способностью t 
закономерно демонстрируют лучшую 
помехоустойчивость. Например, для кода 
БЧХ(15,5) достижение уровня 410BER   
требует ОСШ порядка 4,3 дБ, в то время как 
для кода БЧХ(15,7) необходим ОСШ = 5,2 дБ, 

а для БЧХ(15,11) – ОСШ = 7,2 дБ. 
Для детализации теоретического анализа 

вычислительной сложности и оценки реальной 
производительности двух методов обработки 
синдромной матрицы в рамках алгоритма ПГЦ 
было проведено численное моделирование. В 
ходе него осуществлялся сбор данных о 
времени декодирования и количестве 
элементарных арифметических операций в 
процессе определения полинома локаторов 
ошибок. Сравнение времени обработки 
представлено на рис. 2, а рис. 3 иллюстрирует 
различия в количестве арифметических 
операций для этих двух подходов при 
изменении количества исправляемых ошибок 
t  кодов БЧХ. В рамках данного исследования 
проводится оценка производительности 

 

 

 
Рис. 1. Эффективность исправления ошибок 

кодов БЧХ 

 
Рис. 2. Зависимость времени декодирования  

от числа исправляемых ошибок t 

 
Рис. 3. Зависимость количества операций от 

числа исправляемых ошибок t 
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двоичного кода БЧХ(63,18), обладающего 
максимальной корректирующей способностью 

max 10t   [13]. Для создания контролируемой 
экспериментальной среды в качестве 
передаваемой кодовой комбинации 
принимается нулевая кодовая комбинация. 
Ошибки вводятся преднамеренно путём 
сложения вектора ошибок  e x , имеющего вес 
Хэмминга t , с нулевой кодовой комбинацией. 
Производительность декодера исследуется 
путём варьирования фактического числа 
ошибок t  в диапазоне от 1 до 10 cо способно-
стью исправления t. Моделирование было вы-
полнено несколько раз, чтобы получить сред-
нее время выполнения для каждого значения t. 

Из рис. 2 видно, что реальное время 
обработки для обоих рассматриваемых 
методов увеличивается с ростом значений t . 
При малых значениях t (например, t = 1, 2, 3) 
разница во времени обработки между двумя 
подходами незначительна. Однако, с 
увеличением t  кривая, соответствующая 
методу на основе LU-разложения 3( )O t , 
демонстрирует более выраженный рост 
времени обработки по сравнению с методом, 
использующим рекуррентные вычисления 

2( )O t . Указанное различие в скорости роста 
сложности отражает принципиальную разницу 
в вычислительной трудоёмкости сравниваемых 
алгоритмических частей, хотя итоговое 
реальное время обработки также зависит от 
множества факторов реализации и аппаратной 
платформы.  

На рис. 3 представлена зависимость 
вычислительной сложности процесса поиска 
полинома локаторов ошибок от числа 
исправляемых ошибок t . При 4t   количество 
арифметических операций для обоих методов 
практически совпадает. При 7t   метод, 
ассоциируемый со сложностью 2( ),O t  
оказывается эффективнее примерно на 400 
арифметических операций по сравнению с 
методом, сложность которого для данного 

этапа оценивается как 3( )O t . При 10t   это 
преимущество становится ещё более 
заметным, демонстрируя превосходство 
алгоритма с меньшей вычислительной 
сложностью при обработке кодов с большей 
конструктивной корректирующей способ-
ностью. 

 
Заключение 

Алгоритм декодирования Питерсона —
Горенстейна — Цирлера (ПГЦ) — это 
эффективный алгебраический метод, широко 
применяемый для циклических кодов, таких 
как коды БЧХ и Рида-Соломона, основанный 
на их структуре и фундаментальных 
математических свойствах. Процесс 
декодирования по этому алгоритму включает 
следующие ключевые этапы: 

1. Вычисление вектора синдромов на основе 
принятого кодового слова; значения 
синдромов несут информацию о наличии (или 
отсутствии) ошибок. 

2. Построение полинома локаторов ошибок. 
Этот полином составляется и затем решается 
для отыскания его корней. Данные корни 
напрямую указывают на местоположения 
ошибок в принятом кодовом слове. 

3. Определение величин ошибок и их 
исправление. 

В статье был проведён детальный анализ и 
сравнение вычислительной сложности двух 
подходов к определению полинома локаторов 
ошибок в рамках алгоритма декодирования 
ПГЦ. Теоретический анализ количества 
операций показал, что рекуррентный метод на 
основе алгоритма Левинсона обладает явным 
преимуществом по сравнению с общим 
методом LU-разложения. Хотя эффективность 
исправления ошибок для обоих подходов при 
декодировании одного и того же кода БЧХ 
является сопоставимой, разница в 
вычислительных затратах весьма существенна, 
особенно для больших значений t . Данное 
обстоятельство открывает перспективы для 
дальнейших исследований, нацеленных на 
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комплексную оптимизацию всего процесса 
декодирования. 
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Abstract: This paper presents an analysis of the computational efficiency of various existing methods and a 
novel proposed approach for determining the error locator polynomial in the decoding of Bose–Chaudhuri–
Hocquenghem codes using the Peterson–Gorenstein–Zierler (PGZ) algorithm. Initially, a theoretical analysis 
of the computational complexity of the methods under consideration is conducted. Based on this analysis, the 
corresponding decoding algorithms are implemented and simulated in the MATLAB environment, which al-
lows for an evaluation and comparison of the optimality of the considered methods for decoding specific BCH 
codes. The scientific novelty of this research lies in enhancing the computational efficiency of the PGZ decod-
ing algorithm by exploiting the special structure of the syndrome matrix, which possesses the properties of a 
Toeplitz matrix. All investigated decoding methods demonstrated comparable effectiveness in error correc-
tion. However, the method based on the Levinson algorithm, designed to exploit the special properties of the 
syndrome matrix, exhibited superior computational efficiency. 
Keywords: Bose–Chaudhuri–Hocquenghem codes, error locator polynomial, Peterson–Gorenstein–Zierler 
algorithm, decoding algorithm, syndrome matrix, Toeplitz matrix, Levinson algorithm, computational 
efficiency, arithmetic operations, MATLAB. 
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