УДК 621.396

Алгоритм частотного планирования быстродействующих ЦАП в специальных режимах работы

Мотина И.С., Сочнева Н.А., Ромашова Л.В.

В статье разработан алгоритм частотного планирования формирователей высокочастотных сигналов на основе быстродействующих ЦАП в специальных режимах работы. Представленный алгоритм позволяет выделить режимы работы быстродействующего ЦАП и номера образов, обеспечивающих максимальный выигрыш в уровне амплитуды образов в высших зонах Найквиста. Проведен расчет частотного плана для микросхем AD9164 и AD9172, в результате которого получены 17 и 11 вариантов частотного плана соответственно с набором параметров, обеспечивающих максимальные значения амплитуды образа: наиболее эффективный режим работы ЦАП, номер образа, коэффициент умножения умножителя частоты, величина коэффициента $K_{\text{ЦАП}}$. Показано, что данный алгоритм увеличивает эффективность использования специальных режимов работы ЦАП в целях повышения выходной частоты формирователей сигналов, снижает трудозатраты на этапах их проектирования и эксплуатации.

Ключевые слова: цифро-аналоговый преобразователь, формирователь сигналов, частотное планирование, образы основной частоты, высшие зоны Найквиста, режимы работы ЦАП.

В современных системах радиосвязи, радиолокации и радионавигации, телекоммуникационной, измерительной и медицинской аппаратуре широкое применение получили устройства формирования радиосигналов, построенные на основе прямого цифрового синтеза [1]. Формирование сеток частот в перспективных диапазонах СВЧ и КВЧ (3-300 ГГц) требует современного подхода – применения быстродействующих цифро-аналоговых преобразователей (ЦАП), работающих в специальных режимах работы. Данные режимы позволяют увеличить эффективность использования побочных компонент спектра - образов основной частоты, которые образуются вследствие эффекта дискретизации [2,3]. К специальным режимам работы быстродействующего ЦАП, входящего в состав формирователя высокочастотных сигналов, относятся [4,5]:

- 1. Нормальный режим работы (non-return-to-zero (NRZ)).
- 2. Режим работы 2xNRZ (2×non-return-to-zero).
- 3. Режим с возвратом к нулю (return-to-zero (RZ) mode).
 - 4. Режим работы radio frequency (RF).
- 5. Режим работы RFZ (radio frequency return-to-zero mode).

- 6. Режим работы RFZ2 (radio frequency return-to-zero mode 2).
- 7. Режим работы RFZ3 (radio frequency return-to-zero mode_3).
- 8. Режим работы RFZ4 (radio frequency return-to-zero mode_4).

Специальные режимы работы отличаются друг от друга формой и длительностью тактовых импульсов, определяющих передаточную характеристику ЦАП. От используемого режима будет зависеть амплитудное распределение образов основной частоты в спектре выходного сигнала ЦАП.

В процессе разработки формирователей высокочастотных сигналов решаются две основные задачи: выбор наиболее оптимального варианта реализации функциональных звеньев и обеспечение их электромагнитной совместимости. Для определения допустимых значений параметров формирователя высокочастотных сигналов (коэффициент умножения умножителя частоты УЧ (n_1) , номер и знак используемого образа основной частоты n, тактовая частота f_T и др.) используется частотное планирование. Алгоритм частотного планирования формирователей сигналов с цифровым вычислительным синтезатором

(ЦВС) на образах основной частоты представлен в [6,7].

Появление быстродействующих ЦАП, работающих в специальных режимах работы, поставило перед разработчиками формирователей сигналов новую задачу — поиск оптимальных параметров для обеспечения нужного уровня выходной частоты. Среди большого количества режимов работы и номеров образов необходимо выделить те, что способны обеспечить максимальный уровень амплитуды обр азов в высших зонах Найквиста для конкретных исходных данных.

Целью данной работы является разработка алгоритма частотного планирования формирователей высокочастотных сигналов на основе быстродействующих ЦАП в специальных режимах работы.

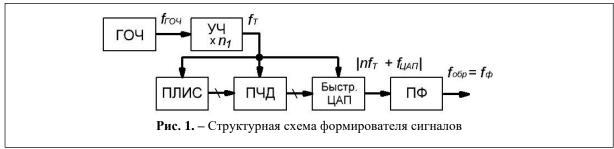
Реализация алгоритма частотного планирования предполагает анализ исходных данных. Необходимо провести оценку целевого применения ЦАП, определить тип генерируемых сигналов и условия их применения. Это позволит определить ключевые характеристики - такие как частотный диапазон, линейность и разрешение. Также важно учесть ограничения самого оборудования: максимальную и минимальную частоты дискретизации, а также соответствующие пределы по выходным напряжениям и токам.

На рис. 1 представлена обобщенная структурная схема формирователя сигналов с использованием быстродействующего цифроаналогового преобразователя в специальных режимах работы [8].

В данной схеме вычислительное ядро формирователя реализовано на основе ПЛИС

(программируемой логической интегральной схемы), выходной сигнал синтезируется при помощи быстродействующего ЦАП в специальных режимах работы, повышающих эффективность применения образов основной частоты. Преобразователь частоты дискретизации (ПЧД) применяется для повышения эффективности использования частоты дискретизации цифрового потока данных, полосовой фильтр (ПФ) выделяет необходимый спектральный компонент с частотой соответствующего образа.

В данной схеме частота сигнала опорного генератора $f_{\Gamma O^{\prime}}$ умножается на коэффициент n_I встроенного дополнительного умножителя тактовой частоты (УЧ). Полученная тактовая частота f_T подается на тактовый вход быстродействующего ЦАП. Частота сигнала на выходе формирователя $f_{\Phi} = f_{o\delta p}$ выделяется полосовым фильтром (П Φ) из множества частот на выходе ЦАП $|nf_T + f_{\text{ЦАП}}|$, где $n=\pm 1, \pm 2, \pm 3...$ – номер образа.


Запишем основные математические соотношения, необходимые для определения выходной частоты формирователя.

Тактовая частота ЦАП связана с частотой ГОЧ пропорциональной зависимостью, определяемой коэффициентом умножения УЧ:

$$f_{\rm T} = n_1 f_{\rm \Gamma O \Psi}.\tag{1}$$

Основная синтезируемая частота ЦАП определяется частотой тактирования и его коэффициентом передачи $K_{U\!A\Pi}$, который в режиме образов ограничивается значениями от 0,15 до 0,35:

$$f_{\text{IIA}\Pi} = K_{\text{IIA}\Pi} f_{\text{T}}.$$
 (2)

Для выделения необходимого образа основной частоты ЦАП на выходе формирователя используется полосовой фильтр, настроенный на соответствующую частоту.

Исходными данными для частотного планирования будут являться: выходная частота формирователя f_{ϕ} , максимальная и минимальная тактовые частоты $f_{T\text{макс}}$ и $f_{T\text{мин}}$ для данного ЦАП, частота ГОЧ (генератора опорной частоты) $f_{\text{гоч}}$.

Алгоритм будет включать в себя следующие этапы:

- 1. На основании исходных данных определяем среднее значение коэффициента передачи ЦАП $K_{\text{ПАП}}$ =(0,15...0,35).
- 2. Устанавливаем максимальное количество образов n_{max} , для которых ведется расчет частотного плана.
 - 3. Задаем диапазон номеров образов

$$n = -n_{max} \dots n_{max}$$
.

Определяем диапазон значений коэффициента умножения тактового умножителя частоты ЦАП (УЧ) в зависимости от типа ЦАП

$$n_1 = 1 ... n_{1 max},$$

исходя из того, что $n_{1_max} = trunc \left(\frac{f_{T_{\text{MAKC}}}}{f_{\Gamma \text{OU}}} \right)$.

4. Определяем максимальную и минимальную частоты ГОЧ

$$f_{\text{гоч}max} = \frac{f_{T_{\text{MAKC}}}(n, K_{\text{ЦАП}})}{n 1_{min}}, \tag{3}$$
$$f_{\text{гоч}min} = \frac{f_{T_{\text{МИН}}}(n, K_{\text{ЦАП}})}{n 1_{max}}, \tag{4}$$

$$f_{\text{гоч}min} = \frac{f_{T_{\text{мин}}}(n, K_{\text{ЦАП}})}{n 1_{max}}, \tag{4}$$

и задаемся частотой f_{TOY} из полученного диапазона.

5. Выполняем расчет необходимой тактовой частоты для различных номеров образов

$$f_T(n1) = f_{\text{roy}} \cdot n1. \tag{5}$$

6. Производим расчет возможных значений коэффициента передачи ЦАП для $n\neq 0$

$$\overline{K_{\text{ЦАП}}}(n,\overline{n_1})=K_{\text{ЦАП}}(n,n_1) \neq 0,$$
(7) при этом

$$\overline{n_1} = n_1$$
при $K_{\text{ПАП}}(n, n_1) \neq 0.$ (8)

8. Рассчитываем основные выходные частоты ЦАП для возможных вариантов:

$$fout(n, \overline{n_1}) = f_{\mathsf{T}}(\overline{n_1}) \cdot \overline{K_{\mathsf{HAII}}}(n, \overline{n_1}).$$
 (9)

9. Рассчитываем частоты образов выходного сигнала ЦАП:

$$foutofp(n, \overline{n_1}) = f_T(\overline{n_1}) \cdot |\overline{K_{IIAII}}(n, \overline{n_1}) + n|(10).$$

10. Формируем таблицу вариантов частотного плана $Fig(n, \overline{n_1}, \overline{K_{\text{IIAII}}})$ с количеством строк m, равным количеству вариантов.

11. Для каждого сочетания полученных коэффициентов n_1 и номера образа n выберем оптимальный специальный режим работы ЦАП с точки зрения максимума амплитуды соответствующего образа.

Для этого пронумеруем каждый из специальных режимов работы и в дальнейших расчетах будем использовать данные обозначения – таблица 1.

Таблица 1 – Нумерация специальных режимов работы ЦАП

	1			
Обозначение	NRZ	2xNRZ	RZ	RF
режима				
Reghim	0	1	2	3
Обозначение	RFZ.	RFZ2	RFZ3	RF74
режима	KrZ	KFZ2	KFZ3	KFZ4
Reghim	4	5	6	7

Для выбора оптимального специального режима работы рассчитаем максимум огибающей спектра выходного сигнала $K_{\text{огиб}}$ для каждого режима работы Reghim по формулам (12-19) [9] и результаты вычислений сведем в массив $K_{o \in u \bar{o}}(n, \overline{n_1}, \text{Reghim}).$

11.1 Режим NRZ

$$K_{\text{огиб}_{\text{m,0}}} = \left| \frac{\sin(\pi \cdot \left| \text{Fig}_{\text{m,0}} + \text{Fig}_{\text{m,2}} \right|)}{\pi \cdot \left| \text{Fig}_{\text{m,0}} + \text{Fig}_{\text{m,2}} \right|} \right| (12)$$

$$K(n,n_1) = \left| \left[\left(\frac{sign(n) \cdot f \varphi}{f \text{так}(n_1)} \right) - n \right] \cdot \left[\left[\left(\frac{sign(n) \cdot f \varphi}{f \text{так}(n_1)} \right) - n \right] \le K \text{цаптах } ^{ } \left[\left(\frac{sign(n) \cdot f \varphi}{f \text{так}(n_1)} \right) - n \right] \ge K \text{цаптап} \right] \text{ if } n \neq 0.$$

$$(6)$$

7. Осуществляем выбор вариантов, возможных для реализации (коэффициенты передачи не равны 0):

11.2. Режим 2xNRZ:

$$K_{\text{огиб}_{m,1}} = \left| \frac{\sin\left(\frac{\pi \cdot |\text{Fig}_{m,0} + \text{Fig}_{m,2}|}{2}\right)}{\left(\frac{\pi \cdot |\text{Fig}_{m,0} + \text{Fig}_{m,2}|}{2}\right)} \right|. \tag{13}$$

11.3. Режим RZ:

$$K_{0\Gamma\mu\delta_{m,2}} = \left| \frac{\sin(\pi \cdot |\text{Fig}_{m,0} + \text{Fig}_{m,2}|)}{2\pi \cdot |\text{Fig}_{m,0} + \text{Fig}_{m,2}|} \right|. \tag{14}$$

11.4. Режим RZ:

$$K_{0\Gamma\mu\delta_{m,3}} = \left[\frac{2(\sin(\pi \cdot |Fig_{m,0} + Fig_{m,2}|))^2}{\pi \cdot |Fig_{m,0} + Fig_{m,2}|} \right]. \tag{15}$$

11.5. Режим RFZ:

$$K_{0\Gamma\mu\delta_{m,4}} = \left[\frac{2(\sin(\pi \cdot |Fig_{m,0} + Fig_{m,2}|))^2}{\pi \cdot ||Fig_{m,0} + Fig_{m,2}||} \right]. \tag{16}$$

11.6. Режим RFZ2:

$$K_{\text{огиб}_{m,5}} = \left[\frac{2\left(\sin\left(\pi \cdot \frac{|\text{Fig}_{m,0} + \text{Fig}_{m,2}|}{q}\right)\right) \cdot \sin\left(\pi \cdot \frac{|\text{Fig}_{m,0} + \text{Fig}_{m,2}|}{2}\right)}{\pi \cdot |\text{Fig}_{m,0} + \text{Fig}_{m,2}|} \right]. \tag{17}$$

11.7. Режим RFZ3:

$$K_{0\Gamma\mu6m,6} = \frac{\left| \frac{\left(\sin\left(\frac{\pi \cdot \left| \text{Fig}_{\text{m,0}} + \text{Fig}_{\text{m,2}} \right|}{16}\right) \cdot \sin\left(\frac{\pi \cdot \left| \text{Fig}_{\text{m,0}} + \text{Fig}_{\text{m,2}} \right|}{16}\right) + \sin\left(5 \cdot \frac{2\pi \cdot \left| \text{Fig}_{\text{m,0}} + \text{Fig}_{\text{m,2}} \right|}{16}\right) \right)}{4 \cdot 2\pi \cdot \frac{\left| \text{Fig}_{\text{m,0}} + \text{Fig}_{\text{m,2}} \right|}{16}}{16}} \right|$$
(18)

11.8. Режим RFZ4:

$$K_{0\Gamma^{\mathsf{M}}6_{\mathsf{m},7}} = \frac{\left| \frac{\left(\sin\left(\frac{\pi \cdot \left| \mathrm{Fig}_{\mathsf{m},0} + \mathrm{Fig}_{\mathsf{m},2} \right|}{16}\right) \cdot \sin\left(\frac{\pi \cdot \left| \mathrm{Fig}_{\mathsf{m},0} + \mathrm{Fig}_{\mathsf{m},2} \right|}{8}\right) + \sin\left(3 \cdot \frac{2\pi \cdot \left| \mathrm{Fig}_{\mathsf{m},0} + \mathrm{Fig}_{\mathsf{m},2} \right|}{8}\right) \right)}{4 \cdot 2\pi \cdot \frac{\left| \mathrm{Fig}_{\mathsf{m},0} + \mathrm{Fig}_{\mathsf{m},2} \right|}{16}} \right|}$$
(19)

В формулах (12-19) m — номер строки массива $K_{ozuō}(n,n_1,Reghim)$, $Fig_{m,0}$, $Fig_{m,2}$ — данные из массива m-ой строки и 0-го и 2-го столбцов, соответствующих $\overline{n_1}$ и $\overline{K_{\Pi \Lambda \Pi}}$.

1. Находим индексы Reghim, которым соответствуют максимальные значения огибающей $K_{\text{огиб}}$ в каждой строке:

$$GetMaxInd(K_{orm6}).$$
 (20)

2. Определяем максимальные значения $K_{\text{огиб max}}$ для каждой строки m maxFig.

При помощи функции Mathcad stack, используемой для слияния нескольких матриц-аргументов сверху вниз, сведем варианты частотного планирования в единый массив:

$$\operatorname{stack}(\operatorname{GetMaxInd}(K_{\operatorname{Oru6}})^{\operatorname{T}}, \operatorname{max}Fig, Fig^{\langle 0 \rangle^T}, Fig^{\langle 1 \rangle^T}, Fig^{\langle 2 \rangle^T}),$$
или $\operatorname{S}(\operatorname{Reghim}, K_{\operatorname{Ozu6} \ max}, n, n_I, K_{\operatorname{ILAII}}).$

В качестве примера проведем расчет частотного плана для микросхемы AD9164, используя среду математического моделирования Mathcad по предложенному алгоритму.

Исходные данные для расчета:

- 1) опорная частота генератора: $f_{\text{гоч}} = 100 \text{ M}\Gamma_{\text{Ц}}$;
- 2) выходная частота формирователя: f_{ϕ} = 3000 МГц;
- 3) максимальное и минимальное значение $K_{\text{ПАП}}$:

$$K_{\text{IIAII}\ max} = 0.15,$$

 $K_{\text{IIAII}\ max} = 0.35.$

- 4) количество разрядов ЦАП: N = 16;
- 5) тактовая частота при отключенном умножителе:

$$f_{\text{так_макс}} = 6400 \cdot 10^6 \, \Gamma_{\text{II}},$$

 $f_{\text{так_мин}} = 1500 \cdot 10^6 \, \Gamma_{\text{II}}.$

Сформированные варианты частотного плана для микросхемы AD9164 представлены в таблице 2.

Таблица 2 — Результаты расчета частотного плана формирователя сигналов с ЦАП АD9164 при $f_{\rm rot}=100~{\rm M}\Gamma$ ц и $f_{\Phi}=3000~{\rm M}\Gamma$ ц

Номер варианта	Номер образа	Коэффициент		f f
	основной	умножения,	$\mathbf{K}_{\mathcal{U}\!AarPi}$	$f_{\rm T} = f_{\rm \Gamma O \Psi} n_1,$
	частоты ЦАП, n	n_1		МГц
0	-2	17	0,235	1700
1	-2	18	0,333	1800
2	-1	36	0,167	3600
3	-1	37	0,189	3000
4	-1	38	0,211	3800
5	-1	39	0,231	3900
6	-1	40	0,250	4000
7	-1	41	0,268	4100
8	-1	42	0,286	4200
9	-1	43	0,302	4300
10	-1	44	0,318	4400
11	-1	45	0,333	4500
12	-1	46	0,348	4600
13	1	23	0,304	2300
14	1	24	0,250	2400
15	1	25	0,2	2500
16	1	26	0,154	2600

В таблице в виде строк представлены рассчитанные 17 возможных вариантов комбинаций параметров частотного планирования. Первый и второй столбцы таблицы содержат номера образов основной частоты ЦАП n и коэффициенты умножения n_1 . В следующих столбцах приведены рассчитанные значения коэффициента передачи ЦАП $K_{II\!AII}$ и тактовой частоты f_T .

Далее рассчитаем максимум огибающей спектра выходного сигнала $K_{\text{огиб}}$ для каждого из вариантов и всех режимов работы быстродействующего ЦАП. Результаты вычислений приведены в таблице 3.

Таблица 3 — Максимумы огибающей спектра выходного $K_{\text{огиб}}$ для каждого режима работы ЦАП AD9164 при $f_{\text{гоч}}=100$ МГц и $f_{\Phi}=3000$ МГц

		NRZ	2xNRZ	RZ	RF	RFZ	RFZ2	RFZ3	RFZ4
№ ва	Reghim	0	1	2	3	4	5	6	7
0		0,122	0,130	0,061	0,164	0,164	0,047	0,073	0,228
1		0,165	0,191	0,083	0,286	0,286	0,095	0,010	0,195
2		0,191	0,738	0,095	0,191	0,191	0,713	0,783	0,746
3		0,220	0,751	0,110	0,246	0,246	0,718	0,805	0,779
4		0,248	0,763	0,124	0,304	0,304	0,721	0,825	0,811
5		0,274	0,774	0,137	0,364	0,364	0,724	0,845	0,841
6		0,300	0,784	0,150	0,424	0,424	0,725	0,863	0,869
7		0,325	0,794	0,162	0,485	0,485	0,724	0,880	0,895
8	8		0,803	0,174	0,545	0,545	0,723	0,896	0,920
9		0,371	0,812	0,186	0,604	0,604	0,722	0,911	0,944

10	0,393	0,819	0,196	0,661	0,661	0,719	0,925	0,966
11	0,413	0,827	0,207	0,716	0,716	0,716	0,939	0,987
12	0,433	0,834	0,217	0,770	0,770	0,713	0,951	1,007
13	0,199	0,433	0,100	0,326	0,326	0,385	0,299	0,094
14	0,180	0,471	0,090	0,255	0,255	0,435	0,353	0,158
15	0,156	0,505	0,078	0,183	0,183	0,480	0,404	0,220
16	0,128	0,536	0,064	0,119	0,119	0,520	0,452	0,281

Определяем индексы Reghim для каждой строки варианта, для которых значение $K_{\text{огиб}}$ максимально:

Таблица 4 — Индексы максимальных значений $K_{\text{огиб}}$ для AD9164 при $f_{\text{гоч}}$ = 100 МГц и f_{ϕ} = 3000 МГц

№ варианта	0	1	2	3	4	5	6	7	8
Reghim	NRZ	RF	RFZ3	RFZ3	RFZ3	RFZ3	RFZ4	RFZ4	RFZ4
	7	3	6	6	6	6	7	7	7

№ варианта	9	10	11	12	13	14	15	16
Reghim	RFZ4	RFZ4	RFZ4	RFZ4	2xNRZ	2xNRZ	2xNRZ	2xNRZ
	7	7	7	7	1	1	1	1

Максимальное значение $K_{\text{огиб}}$ для каждой строки приведено в таблице 5:

Таблица 5 — Максимальное значение $K_{\text{огиб}}$ для каждой строки для AD9164 при $f_{\text{гоч}}$ = 100 МГц и f_{Φ} = 3000 МГц

№ Bap	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Коги	0,228	0,286	0,783	0,805	0,825	0,845	0,869	0,895	0,920	0,944	0,966	0,987	1,007	0,433	0,471	0,505	0,536

Результирующие варианты расчета частотного плана для микросхемы AD9164, полученные путем слияния таблиц 4,5 и 2, приведены в таблице 6.

Таблица 6 — Результаты расчета частотного плана формирователя сигналов для AD9164 при $f_{\rm rou}$ = 100 МГц и $f_{\bar \varphi}$ = 3000 МГц

, уф													
0	1		2		3		1	5		6		7	8
RFZ4	RF	F	RFZ3	FZ3 RI		RF	Z3	Z3 RFZ		3 RFZ4		RFZ4	RFZ4
0,228	0,286	(),783	0,	805	0,8	25	0,845		0,869		0,895	0,920
-2	-2		-1		-1	-	1	-1		-1		-1	-1
17	18		36	,	37	3	8	39		40		41	42
0,235	0,333	(),167	0,	189	0,2	11	0,23	1	0,25		0,268	0,286
1700	1800	()	3600	600 37		700 38		390	0	4000		4100	4200
9	10		11	1:		2		13		14		15	16
RFZ4	RFZ4	ļ	RFZ	Z4 R		Z4	2x]	NRZ	2:	xNRZ	2	xNRZ	2xNRZ
0,944	0,966	<u>, </u>	0,98	7	1,0		0,	433	(),471	(0,505	0,536
-1	-1		-1		-]	1		1		1		1	1
43	44		45		40	6	1	23		24		25	26
0,302	0,318	3	0,333		0,3	48	0,	304	0,25			0,2	0,154
4300	4400		450	0	0 460		2300		2400			2500	4600
	0 RFZ4 0,228 -2 17 0,235 1700 9 RFZ4 0,944 -1 43 0,302	0 1 RFZ4 RF 0,228 0,286 -2 -2 17 18 0,235 0,333 1700 1800 9 10 RFZ4 RFZ4 0,944 0,966 -1 -1 -1 43 44 0,302 0,318	0 1 RFZ4 RF F 0,228 0,286 0 -2 -2 17 18 0,235 0,333 0 1700 1800 3 9 10 RFZ4 RFZ4 0,944 0,966 -1 -1 43 44 0,302 0,318	0 1 2 RFZ4 RF RFZ3 0,228 0,286 0,783 -2 -2 -1 17 18 36 0,235 0,333 0,167 1700 1800 3600 9 10 11 RFZ4 RFZ4 RFZ 0,944 0,966 0,98 -1 -1 -1 43 44 45 0,302 0,318 0,33	0 1 2 RFZ4 RF RFZ3 RI 0,228 0,286 0,783 0, -2 -2 -1 17 17 18 36 36 0,235 0,333 0,167 0, 1700 1800 3600 37 9 10 11 RFZ4 RFZ4 RFZ4 0,944 0,966 0,987 -1 -1 -1 43 44 45 0,302 0,318 0,333	0 1 2 3 RFZ4 RF RFZ3 RFZ3 0,228 0,286 0,783 0,805 -2 -2 -1 -1 17 18 36 37 0,235 0,333 0,167 0,189 1700 1800 3600 3700 9 10 11 12 RFZ4 RFZ4 RFZ4 RF 0,944 0,966 0,987 1,0 -1 -1 -1 -1 43 44 45 44 0,302 0,318 0,333 0,3	0 1 2 3 4 RFZ4 RF RFZ3 RFZ3 RF 0,228 0,286 0,783 0,805 0,8 -2 -2 -1 -1 - 17 18 36 37 3 0,235 0,333 0,167 0,189 0,2 1700 1800 3600 3700 38 9 10 11 12 RFZ4 RFZ4 RFZ4 RFZ4 0,944 0,966 0,987 1,007 -1 -1 -1 -1 43 44 45 46 0,302 0,318 0,333 0,348	0 1 2 3 4 RFZ4 RF RFZ3 RFZ3 RFZ3 0,228 0,286 0,783 0,805 0,825 -2 -2 -1 -1 -1 17 18 36 37 38 0,235 0,333 0,167 0,189 0,211 1700 1800 3600 3700 3800 9 10 11 12 RFZ4 RFZ4 RFZ4 RFZ4 2xl 0,944 0,966 0,987 1,007 0, -1 -1 -1 -1 -1 43 44 45 46 2 0,302 0,318 0,333 0,348 0,	0 1 2 3 4 5 RFZ4 RF RFZ3 RFZ3 RFZ3 RFZ3 0,228 0,286 0,783 0,805 0,825 0,84 -2 -2 -1 -1 -1 -1 17 18 36 37 38 39 0,235 0,333 0,167 0,189 0,211 0,23 1700 1800 3600 3700 3800 390 9 10 11 12 13 RFZ4 RFZ4 RFZ4 RFZ4 2xNRZ 0,944 0,966 0,987 1,007 0,433 -1 -1 -1 -1 1 43 44 45 46 23 0,302 0,318 0,333 0,348 0,304	0 1 2 3 4 5 RFZ4 RF RFZ3 RFZ3 RFZ3 RFZ3 0,228 0,286 0,783 0,805 0,825 0,845 -2 -2 -1 -1 -1 -1 17 18 36 37 38 39 0,235 0,333 0,167 0,189 0,211 0,231 1700 1800 3600 3700 3800 3900 9 10 11 12 13 RFZ4 RFZ4 RFZ4 2xNRZ 2x 0,944 0,966 0,987 1,007 0,433 0 -1 -1 -1 -1 1 1 43 44 45 46 23 0,302 0,318 0,333 0,348 0,304	0 1 2 3 4 5 6 RFZ4 RF RFZ3 RFZ3 RFZ3 RFZ4 0,228 0,286 0,783 0,805 0,825 0,845 0,869 -2 -2 -1 -1 -1 -1 -1 -1 17 18 36 37 38 39 40 0,235 0,333 0,167 0,189 0,211 0,231 0,25 1700 1800 3600 3700 3800 3900 4000 9 10 11 12 13 14 RFZ4 RFZ4 RFZ4 2xNRZ 2xNRZ 0,944 0,966 0,987 1,007 0,433 0,471 -1 -1 -1 -1 1 1 43 44 45 46 23 24 0,302 0,318 0,333 0,348 0,304 0,25	0 1 2 3 4 5 6 RFZ4 RF RFZ3 RFZ3 RFZ3 RFZ3 RFZ4 0,228 0,286 0,783 0,805 0,825 0,845 0,869 -2 -2 -1 -1 -1 -1 -1 17 18 36 37 38 39 40 0,235 0,333 0,167 0,189 0,211 0,231 0,25 1700 1800 3600 3700 3800 3900 4000 9 10 11 12 13 14 RFZ4 RFZ4 RFZ4 RFZ4 2xNRZ 2xNRZ 2 0,944 0,966 0,987 1,007 0,433 0,471 -1 -1 -1 -1 -1 1 1 1 43 44 45 46 23 24 0,302 0,318 0,333 <td< td=""><td>0 1 2 3 4 5 6 7 RFZ4 RF RFZ3 RFZ3 RFZ3 RFZ4 RFZ4 0,228 0,286 0,783 0,805 0,825 0,845 0,869 0,895 -2 -2 -1 -1 -1 -1 -1 -1 -1 170 18 36 37 38 39 40 41 0,235 0,333 0,167 0,189 0,211 0,231 0,25 0,268 1700 1800 3600 3700 3800 3900 4000 4100 9 10 11 12 13 14 15 RFZ4 RFZ4 RFZ4 2xNRZ 2xNRZ 2xNRZ 0,944 0,966 0,987 1,007 0,433 0,471 0,505 -1 -1 -1 -1 1 1 1 43 44 45</td></td<>	0 1 2 3 4 5 6 7 RFZ4 RF RFZ3 RFZ3 RFZ3 RFZ4 RFZ4 0,228 0,286 0,783 0,805 0,825 0,845 0,869 0,895 -2 -2 -1 -1 -1 -1 -1 -1 -1 170 18 36 37 38 39 40 41 0,235 0,333 0,167 0,189 0,211 0,231 0,25 0,268 1700 1800 3600 3700 3800 3900 4000 4100 9 10 11 12 13 14 15 RFZ4 RFZ4 RFZ4 2xNRZ 2xNRZ 2xNRZ 0,944 0,966 0,987 1,007 0,433 0,471 0,505 -1 -1 -1 -1 1 1 1 43 44 45

В результате расчетов получены 17 вариантов частотного плана с набором параметров, обеспечивающих максимальные значения амплитуды образа при соответствующем режиме работы ЦАП. Как видно, амплитуда огибающей максимальна и стремится к 1 при использовании режи-

мов 6 (RFZ3) и 7 (RFZ4). Для этих режимов получается большая тактовая частота, а для формирования выходного сигнала используется образ n=-1. Это говорит о меньшем уровне собственных шумов ЦАП.

Аналогичные расчеты частотного плана проведены для микросхемы AD9172 при следующих исходных данных: количество разрядов ЦАП 16, тактовые частоты при отключенном умножителе: минимальная - 2910 МГц и максимальная - 6200 МГц. Результаты при такой же опорной частоте генератора $f_{\text{гоч}}$ =100 МГц и выходной частоте формирователя f_{Φ} = 3000 МГц приведены в таблице 7.

Таблица 7 — Результаты расчета частотного плана формирователя сигналов для AD9172 при $f_{\rm rou} = 100~{\rm M}\Gamma$ ц и $f_{\rm \varphi} = 3000~{\rm M}\Gamma$ ц

№ Bap.	0	1	2	3	4	5	6	7	8	9	10
Reghim	RFZ3	RFZ3	RFZ3	RFZ3	RFZ4						
Когиб	0,783	0,805	0,825	0,845	0,869	0,895	0,920	0,944	0,966	0,987	1,007
n	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
n_1	36	37	38	39	40	41	42	43	44	45	46
$K_{\text{ЦАП}}$	0,167	0,189	0,211	0,231	0,250	0,268	0,286	0,302	0,318	0,333	0,348
f_T	3600	3700	3800	3900	4000	4100	4200	4300	4400	4500	4600

Видно, что здесь оптимальными режимами для получения максимальной амплитуды образа n=-1 также являются RFZ3 и RFZ4.

Повышение выходной частоты приведет к необходимости использования высших зон Найквиста, т.е. использованию высших номеров образов.

Для сопоставления результатов проведем частотное планирование формирователя сигналов для ЦАП AD9164 и AD9172 при $f_{\rm roq}=100$ МГц и $f_{\varphi}=9000$ МГц. Результаты представлены в таблицах 8 и 9.

Таблица 8 — Результаты расчета частотного плана формирователя сигналов для AD9164 при $f_{\rm roq} = 100~{\rm M}\Gamma_{\rm H}$ и $f_{\rm \varphi} = 9000~{\rm M}\Gamma_{\rm H}$

Reghim 2xNRZ RFZ3 2xNRZ 2xNRZ RFZ4 RFZ4 RFZ4 RFZ4 RFZ4 RFZ4 RFZ4 RF	7 8
	Z4 RF
$K_{\text{огиб}}$ 0,123 0,226 0,217 0,212 0,241 0,236 0,228 0,3	219 0,247
n -5 -4 -3 -3 -2 -2 -2 -2	2 -2
n ₁ 19 24 32 33 49 50 51 5	2 53
K _{ЦАП} 0,263 0,25 0,188 0,273 0,163 0,20 0,235 0,3	0,302
f_T 1900 2400 3200 3300 4900 5000 5100 52	00 5300
№ Bap. 9 10 11 12 13 14 15	16
Reghim RF RFZ3 RFZ3 RFZ3 RFZ4 RFZ4 RFZ4	3 2xNRZ
Когиб 0,286 0,218 0,219 0,216 0,303 0,302 0,20	8 0,108
n -2 2 2 2 3 3 4	5
n ₁ 54 39 40 41 27 28 21	17
Кцап 0,333 0,308 0,250 0,195 0,333 0,214 0,28	6 0,294
f_T 5400 3900 4000 4100 2700 2800 210	1700

Из таблиц 6,8 следует, что при выходных частотах формирователя $f_{\varphi}=3000$ МГц и $f_{\varphi}=9000$ МГц реализуется одинаковое количество вариантов. Однако при $f_{\varphi}=3000$ МГц образы располагаются во 2-й, 3-й и 4-й зонах Найквиста, тогда как при $f_{\varphi}=9000$ МГц МГц образы начинают размещаться в 4-й зоне Найквиста и выше, при этом амплитуды образов существенно уменьшаются.

J101		Эт	,								
№ Bap.	0	1	2	3	4	5	6	7	8	9	10
Reghim	2xNRZ	2xNRZ	RFZ4	RFZ4	RFZ4	RFZ4	RF	RF	RFZ3	RFZ3	RFZ3
Когиб	0,217	0,212	0,241	0,236	0,228	0,219	0,247	0,286	0,218	0,219	0,216
n	-3	-3	-2	-2	-2	-2	-2	-2	2	2	2
n_1	32	33	49	50	51	52	53	54	39	40	41
$K_{L\!\!/\!A\Pi}$	0,188	0,273	0,163	0,200	0,235	0,269	0,302	0,333	0,308	0,250	0,195
f_T	3200	3300	4900	5000	5100	5200	5300	5400	3900	4000	4100

Таблица 9 — Результаты расчета частотного плана формирователя сигналов для AD9172 при $f_{\text{гоч}} = 100 \ \text{M}\Gamma_{\text{Ц}} \ \text{u} \ f_{\text{ф}} = 9000 \ \text{M}\Gamma_{\text{Ц}}$

Сравнивая результаты частотного планирования для двух исследуемых микросхем AD9164 и AD9172, можно сделать следующий вывод: для каждого типа ЦАП реализуется одинаковое количество вариантов, а также наблюдается закономерность: чем выше выходная частота, тем более высокие зоны Найквиста (номера образов) используются и тем меньше амплитуда каждого образа.

Таким образом, разработанный алгоритм частотного планирования для формирователей сигналов с быстродействующими ЦАП в специальных режимах работы позволяет определить оптимальный набор параметров формирователей с точки зрения максимальной амплитуды образа, позволяющий повысить выходную частоту до необходимых значений. Приводятся наиболее эффективный режим работы ЦАП, номер образа, коэффициент умножения умножителя частоты, величина коэффициента K_{ILAII} . Использование данного алгоритма частотного планирования увеличивает эффективность использования специальных режимов работы ЦАП в целях повышения выходной частоты формирователей сигналов, снижает трудозатраты на этапах их проектирования и эксплуатации.

Литература

- 1. Ромашов В.В., Храмов К.К., Докторов А.Н. Модель цифрового вычислительного синтезатора, работающего на образах основной частоты // Радиотехнические и телекоммуникационные системы. 2012. №2.С.13-17.
- 2. Ромашов В.В., Ромашова Л.В., Якименко К.А. Исследование шумовых характеристик гибридного синтезатора частот на основе однокольцевой ИФАПЧ со смесителем и цифрового вычислительного синтезатора // Радиотехнические и телекоммуникационные системы. 2013. № 4 (12). С.23-29.
- 3. Ромашов В.В., Ромашова Л.В., Храмов К.К., Якименко К.А. Применение образов основной частоты ЦВС в гибридных синтезаторах частот // Радиотехнические и телекоммуникационные системы. 2013. № 3 (11). С.19-24.
- 4. Ромашов В.В., Храмов К.К. Формирователи сетки опорных частот возбудителя передатчика с использованием образов основной частоты // Методы и устройства передачи и обработки информации. 2011. №13. С. 44-47.
- 5. Ромашов В.В., Храмов К.К., Докторов А.Н., Якименко К.А., Сочнева Н.А. Повышение эффективности использования высших зон Найквиста

Поступила 25 июня 2024 г.

- при прямом цифровом синтезе высокочастотных сигналов // Радиотехника. Т.86, 2022, № 5. С.135-144
- 6. Ромашов В.В., Храмов К.К. Частотное планирование диапазонных формирователей радиосигналов с использованием образов основной частоты ЦВС // Проектирование и технология электронных средств. 2013, No 3. C.38-43.
- 7. Ромашов В.В., Храмов К.К., Докторов А.Н. Частотное планирование формирователей сигналов радиосистем на основе цифровых вычислительных синтезаторов // Радиотехнические и телекоммуникационные системы. 2012, №4. С.10-16.
- 8. Ромашов В.В., Докторов А.Н., Якименко К.А., Сочнева Н.А., Матерухин С.Е. Математическое моделирование шумовых характеристик формирователей высокочастотных сигналов на основе быстродействующих цифро-аналоговых преобразователей // Радиотехнические и телекоммуникационные системы. 2019, №4. С.52-59.
- 9. Ромашов В.В., Храмов К.К. Сравнительный анализ режимов работы быстродействующих ЦАП // Радиотехнические и телекоммуникационные системы. 2018, №4. С.44-54.

The article develops an algorithm for frequency planning of high-frequency signal generators based on high-speed DACs in special operating modes. The presented algorithm makes it possible to identify the modes of operation of a high-speed DAC and the numbers of images that ensure maximum gain in the amplitude of images in the higher Nyquist zones. The frequency plan was calculated for the AD9164 and AD9172 chips, as a result of which 17 and 11 frequency plan variations were obtained, respectively, with a set of parameters providing the maximum values of the image amplitude: the most efficient DAC operation mode, the image number, the frequency multiplier multiplication factor, and the value of the DAC coefficient. It is shown that this algorithm increases the efficiency of using special operating modes of the DAC in order to increase the output frequency of the signal generators, reduces labor costs at the stages of their design and operation.

Key words: digital-to-analog converter, signal generator, frequency planning, fundamental frequency images, higher Nyquist zones, DAC operation modes.

Мотина Ирина Сергеевна — магистрант кафедры радиотехники Муромского института (филиала) ФГБОУ ВО «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых»

Cочнева Hаталья Aлександровна — ассистент кафедры радиотехники Муромского института (филиала) ФГБОУ ВО «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых».

Ромашова Любовь Владимировна — кандидат технических наук, доцент кафедры радиотехники Муромского института (филиала) ФГБОУ ВО «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых».

Адрес: 602264, г. Муром, ул. Орловская, 23.