## УДК 621.391.004

# Сравнительный анализ трех способов формирования синхронных ансамблей кардиоосцилляций при кардиоайгеноскопии

Аббас Р.М., Аль-Кавати А.А., Косарева К.В.

В статье рассмотрены три способа формирования синхронных ансамблей кардиоосцилляций при айгеноскопии и приведен их сравнительный анализ.

Ключевые слова: кардиоайгеноскопия; синхронный ансамбль; объединённый синхронный ансамбль; развёрнутый синхронный ансамбль; собственный вектор; PQRST-цикл.

### Введение

Кардиоайгеноскопия [1-4] — инновационный способ хранения и автоматического анализа многоканальных ЭКГ, полученных по нескольким отведениям, в основе которого лежит представление PQRST-циклов в базисах собственных векторов [5] ковариационных матриц [6] этих циклов. Структурная схема кардиоайгеноскопа приведена на рис.1.



плотности; 3 — вычислитель собственных пар (собственных векторов и собственных значений); 4 — блок восстановления кардиосигнала и анализа признаков

Кардиоайгеноскоп относится к числу анализаторов сигналов с адаптивным базисом; общее преимущество таких анализаторов и способ их анализа описаны в [7].

Построение базиса собственных векторов в кардиоайгеноскопе основано на формировании синхронных ансамблей кардиоосцилляций. Синхронный ансамбль состоит из элементов — отрезков ЭКГ заданной длины, каждый из которых с точностью до дискрета связан со своим R-зубцом. Эффективный способ определения положения R-зубцов и формирования синхронного ансамбля описан в [3] и [8]. При работе кардиоайгеноскопа возможно использование трёх типов синхронных ансамблей:

1. Синхронные ансамбли, построенные для каждого отдельного отведения, далее кратко именуемые СА.

2. Объединенный синхронный ансамбль, в который записываются элементы всех СА, далее ОСА.

3. Развёрнутый синхронный ансамбль, каждый элемент которого получается путём объединения элементов ансамблей разных отведений, относящихся к одному и тому же PQRST-циклу, далее PCA.

Если СА и РСА ранее были рассмотрены в [1] и [2], то ОСА впервые рассматривается в данной работе.

В статье рассмотрены три способа формирования синхронных ансамблей кардиоосцилляций и сделан их сравнительный анализ.

## Формирование СА, ОСА и РСА

Пусть ЭКГ в нескольких отведениях, поступающая на вход блока 1 кардиоайгеноскопа (рис. 1), представлена матрицей, которую можно записать в трёх эквивалентных формах

$$U \equiv U_{L \times Q} \equiv \left[u_{i,j}\right]_{L \times Q},$$

где L — число отведений, Q — число дискретов сигнала в каждом из отведений,  $u_{i,j}$  — *j*ый отсчет ЭКГ в *i*-ом отведении,  $\equiv$  — знак эквивалентности. В блоке 1 кардиоайгеноскопа определяются положения R-зубцов и номера дискретов, соответствующие их положению, которые записаны в матрицу-строку

$$R^{(max)} \equiv R_{1 \times N}^{(max)} =$$
  
=  $[r_1^{(max)}, r_2^{(max)}, ..., r_N^{(max)},]_{1 \times N}$ ,  
где N — число PQRST-циклов в ЭКГ, 1  $\leq$ 

 $r_k^{(max)} \le Q, k = \overline{1:N}$  — номера дискретов, соответствующих k-ому R-зубцу.

Для R-зубцов (начиная со второго и заканчивая предпоследним) определяются номера дискретов начала и конца элементов синхронного ансамбля. Эти номера по порядку их следования записываются в первую и вторую строки двухстрочной матрицы

$$\begin{split} D &\equiv D_{2 \times (N-2)} = \\ &= \begin{bmatrix} \tau_{1,1} & \cdots & \tau_{1,k} & \cdots & \tau_{1,(N-2)} \\ \tau_{2,1} & \cdots & \tau_{2,k} & \cdots & \tau_{1,(N-2)} \end{bmatrix} . \end{split}$$

Первая строка матрицы (3) содержит номера дискретов  $\tau_{1,k}$ , соответствующих началу, а вторая  $\tau_{2,k}$  — концу k-ого элемента ансамбля. Элемент СА с номером j, записанный в виде матрицы-строки в нотации "бракет" имеет вид:

$$\langle z^{(i,j)} | = [u_{i,\tau_{1,j}} \quad \dots \quad u_{i,\tau_{2,j}}]_{1 \times M},$$

где і — номер отведения, ј — номер PQRSTцикла, М — размерность элемента ансамбля.

ЭКГ может быть представлена своей матрицей покрытия, в которую входят элементы синхронного ансамбля

$$Z \equiv Z_{L \times (N-2)} = \left[ \langle z^{(i,j)} | \right]_{L \times (N-2)},$$

где  $\langle z^{(i,j)} | - j$ -ый элемент синхронного ансамбля *i*-го отведения в форме «бра», *i* =  $\overline{1:L}, j = \overline{1:(N-2)}$  — индексы элемента синхронного ансамбля.

Рассмотрим формирование СА в отдельном отведении.

СА в *k*-ом отведении определяется в нотации "бра-кет" соотношением:

$$\begin{split} A &\equiv A_{M \times (N-2)}^{(k)} = \\ &= \langle \left| z^{(k,1)} \right\rangle_{M'} \ \left| z^{(k,2)} \right\rangle_{M'} \ \dots, \ \left| z^{(k,N)} \right\rangle_{M'} \right|_{(N-2)}, \end{split}$$

где  $k = \overline{1:L}$  — номер отведения.

Каждый столбец ансамбля (6) — элемент, определяемый соотношением (4), но уже в форме "кет".

Для формирования матрицы ОСА испол(2) зуется соотношение

$$\begin{split} B &\equiv B_{M \times (N-2) \cdot L} = \\ &= \langle A_{M \times (N-2)}^{(1)}, A_{M \times (N-2)}^{(k)}, \dots, A_{M \times (N-2)}^{(L)} | , \end{split}$$
где  $k = \overline{1:L}$  — номер отведения.

Каждый матричный элемент ОСА (7) определяется соотношением (6), т.е. является СА отдельного отведения.

Соотношение для формирования РСА является матрицей-строкой

$$\begin{split} \Gamma &\equiv \Gamma_{M \cdot L \times (N-2)} = \left| \hat{z}^{(i)} \right| \rangle_{(N-2)}, \\ \text{где } \left\langle \hat{z}^{(i)} \right| &= \left\langle \left\langle z^{(1,i)} \right|, \quad \left\langle z^{(2,i)} \right| \quad \dots, \quad \left\langle z^{(L,i)} \right| \right| \frac{(\beta)}{(\beta)} \\ \text{i-ый элемент РСА в форме «бра» (матрица$$
 $строка). \end{split}$ 

# Ковариационная матрица и матрица плотности CA, ОСА и РСА

Ковариационная матрица СА в k-ом отведении определяется в блоке 2 кардиоайгеноскопа (рис.1) соотношением (4)

$$W_A^{(k)} = A^{(k)} \cdot \left(A^{(k)}\right)' / (N-2), \tag{4}$$

а матрица плотности СА (МП СА) определяется соотношением

$$\rho_A^{(s(k))} \equiv \rho_A^{(k)} = W_A^{(k)} / Sp(W_A^{(k)}),$$

где  $Sp(W_A^{(k)})$  — след (сумма диагональних) элементов) ковариационной матрицы.

Ковариационная матрица ОСА определяется соотношением

$$W_B = B \cdot \frac{B'}{N-2}$$

а МП ОСА определяется соотношением

$$\rho_B = \frac{W_B}{Sp(W_B)}$$

где  $Sp(W_B)$  — след ковариационной матрицы. Ковариационная матрица РСА: (6)  $W_{\Gamma} = \Gamma \cdot \Gamma' / (N-2),$ 



а МП РСА определяется соотношением  $\rho_{\Gamma} = \frac{W_{\Gamma}}{Sp(W_{\Gamma})},$ 

где  $Sp(W_{\Gamma})$  — след ковариационной матрицы.

Для иллюстрации работы кардиоайгеноскопа ограничимся случаем, когда используются первые три отведения: для здорового человека, запись ЭКГ пациента № 155, и для пациента № 218 с аритмическим синдромом, из общедоступной базы данных [9].

Для пациента № 155: на рис. 2 показана МП СА для первых трёх отведений, построенная с помощью (10); на рис. 3 приведена МП



ОСА для тех же отведений, полученная с помощью (12); МП РСА для трёх отведений, пос троенная на основании (14), показана на рис.4.

Аналогично для пациента № 218 с аритмическим синдромом на рис.5-7 показаны МП СА, МП ОСА и МП РСА.

## Точность представления PQRST-цикла с использованием собственных векторов матриц плотности CA, OCA и PCA

Ковариационные матрицы и МП, определяемые (9-14) — симметричны и неотрицательно определены (имеют неотрицательные собственные значения). Это позволяет записать соотношения для их собственных пар (собственных векторов (СВ) и собственных значений (C3)) в двух эквивалентных формах, когда CB представлены в форме «бра» (как и ранее матрица-строка) и форме «кет» (матрицастолбец).

Для СА:  

$$\rho_{\mathbf{A}}^{(k)} \cdot \left| \psi_{i}^{(k)} \right\rangle = \lambda_{i}^{(k)} \cdot \left| \psi_{i}^{(k)} \right\rangle,$$

$$\langle \psi_{i}^{(k)} \right| \cdot \rho_{\mathbf{A}}^{(k)} = \lambda_{i}^{(k)} \cdot \langle \psi_{i}^{(k)} \right|,$$

где  $|\psi_i^{(k)}\rangle$  или  $|\psi_i^{(s(k))}\rangle$  — собственный вектор в форме «кет»,  $\langle \psi_i^{(k)} |$  — собственный вектор в форме «бра»,  $\lambda_i^{(k)}$  — собственное значение,  $i = \overline{1:M}$  — номер собственной пары.

Для ОСА:  

$$\begin{split} \rho_{A}^{(B)} \cdot \left| \psi_{i}^{(B)} \right\rangle &= \lambda_{i}^{(B)} \cdot \left| \psi_{i}^{(B)} \right\rangle, \\ \left\langle \psi_{i}^{(B)} \right| \cdot \rho_{A}^{(B)} &= \lambda_{i}^{(B)} \cdot \left\langle \psi_{i}^{(B)} \right|, \end{split}$$





формах «кет» и «бра»,  $\lambda_i^{(B)}$  — собственное значение,  $i = \overline{1:M}$  — номер собственной пары.

Для РСА:

 $\rho_{\rm A}^{(\Gamma)} \cdot \left| \psi_i^{(\Gamma)} \right\rangle = \lambda_i^{(\Gamma)} \cdot \left| \psi_i^{(\Gamma)} \right\rangle,$  $\langle \psi_i^{(\Gamma)} | \cdot \rho_{\mathsf{A}}^{(\Gamma)} = \lambda_i^{(\Gamma)} \cdot \langle \psi_i^{(\Gamma)} |,$  значение,  $i = \overline{1: M \cdot L}$  — номер собственной пары.

Из (15-17) непосредственно следует ортонормированность базисов СВ, задаваемых/ МП СА, ОСА и РСА — (10), (12) и (14). )



(диагноз — Аритмический синдром)

Собственные векторы СА и ОСА имеют одинаковую размерность М, что позволяет использовать их для представления элементов ансамблей в любом из отведений.

Так, для СА коэффициенты разложения элементов j-го СА по i-му CB k-го СА, записанные в виде "бра" и "кет":

$$\begin{split} \left< \alpha_i^{(k,j)} \right| &= \left< \psi_i^{(k)} \right| \cdot A^{(j)}, \\ \left| \alpha_i^{(k,j)} \right> &= (A^{(j)})' \cdot \left| \psi_i^{(k)} \right>, \\ \left< \alpha_i^{(k,k)} \right| &= \left< \alpha_i^{(k)} \right|, \end{split}$$

а коэффициенты разложения элементов СА по i-му СВ того же СА, записанные в виде "бра" и "кет":

$$\begin{split} \left\langle \alpha_{i}^{(k)} \right|_{(N-2)\times 1} &\equiv \left\langle \psi_{i}^{(k)} \right| \cdot A^{(k)} = \left\langle \alpha_{i}^{(k)} \right|, \\ \left| \alpha_{i}^{(k)} \right\rangle_{(N-2)\times 1} &\equiv (A^{(k)})' \cdot \left| \psi_{i}^{(k)} \right\rangle = \left| \alpha_{i}^{(k)} \right\rangle. \end{split}$$

Для ОСА коэффициенты разложения ОСА по i-му CB ОСА, записанные в виде "бра" и "кет":

$$\begin{aligned} \left\langle \beta_{i} \right|_{1 \times (N-2) \cdot L} &\equiv \left\langle \psi_{i}^{(B)} \right| \cdot B = \left\langle \beta_{i} \right|, \\ \left| \beta_{i} \right\rangle_{(N-2) \cdot L \times 1} &\equiv (B)' \cdot \left| \psi_{i}^{(B)} \right\rangle = \left| \beta_{i} \right\rangle. \end{aligned}$$
(18)

Отметим, что благодаря одинаковой размерности M собственных векторов CA и OCA, возможно представление PQRST-цикла CA в базисе CB OCA, с коэффициентами разложения CA по i-му CB OCA, записанными в виде "бра" и "кет":





енты разложения РСА по і-му СВ РСА, записанные в виде "бра" и "кет":

$$\langle \gamma_i |_{1 \times (N-2)} \equiv \langle \psi_i^{(\Gamma)} | \cdot \Gamma = \langle \gamma_i |,$$



 $|\gamma_i\rangle_{(N-2)\times 1} \equiv (\Gamma)' \cdot \left|\psi_i^{(\Gamma)}\rangle = |\gamma_i\rangle.$ 

Относительное среднеквадратическое отклонение при представлении элементов с использованием СА, ОСА и РСА в случае использования соответствующих им базисов СВ определяется (23), (24), (25).

$$\delta^{s(k)}(m) = \sum_{i=m+1}^{M} \lambda_i^{s(k)},$$

где  $\delta^{s(k)}$  — относительная среднеквадратическая ошибка, m — количество CB, используемых для представления элемента ансамбля в k-ом отведении,  $\lambda_i^{s(k)}$  — спектр собственных значений МП (равный нормированному к её







Рис. 11. – Зависимость коэффициента сжатия ЭКГ в трёх отведениях от количества PQRST-циклов при использовании двух CB CA, OCA и PCA

следу спектру собственных значений (НССЗ) КМ).

Для ОСА:

$$\delta^{(B)}(m) = \sum_{i=m+1}^{M} \lambda_i^{(B)},$$

где  $\delta^{(B)}$  — относительная среднеквадратическая ошибка представления элемента ОСА, m— количество СВ, используемых для представления элемента ОСА,  $\lambda_i^{(B)}$  — спектр собственных значений МП (равный нормированному к её следу спектру собственных значений (НССЗ) КМ). Для РСА:

$$\delta^{(\Gamma)}(m) = \sum_{i=m+1}^{M \cdot L} \lambda_i^{(\Gamma)},$$

где  $\delta^{(\Gamma)}$  — относительная среднеквадратическая ошибка представления элемента РСА, m— количество СВ, используемых для представления элемента РСА,  $\lambda_i^{(\Gamma)}$  — спектр собственных значений МП (равный нормированному к её следу спектру собственных значений (НССЗ) КМ).





## Результаты сравнительного анализа для СА, ОСА и РСА

На рис.8 представлены нормированные спектры C3 КМ в дБ — а), в), д) и графики относительной среднеквадратической ошибки в дБ — б), г), е) для CA по отведениям I, II, III для пациента №155 (диагноз — Здоров) [9], соответственно.

Аналогично, показаны нормированные спектры СЗ КМ в дБ — а) и графики относительной среднеквадратической ошибки в дБ — б) для ОСА (рис.9) и РСА (рис.10), построенного по первым трём отведениям, для пациента №155 (диагноз — Здоров) [9].

Общее число CB, необходимых для представления элементов CA для всех отведений ЭКГ с заданной относительной среднеквадратической ошибкой, определяется соотношением

 $m^{(A)}(\delta) = \sum_{k=1}^{L} m^{s(k)}(\delta).$ 

Оценим коэффициенты сжатия ЭКГ, которые могут быть достигнуты при использовании СА, ОСА и РСА в системах хранения и автоматического анализа ЭКГ, использующих кардиоайгеноскопию [10] и [11].

Очевидно, что количество чисел, необходимых для хранения ЭКГ при сжатии в базисах СА, ОСА и РСА соответственно равно:

$$Q_{CA} = m^{(A)}(\delta) \cdot L \cdot M + \\ +m^{(A)}(\delta) \cdot L \cdot (N-2) + (N-3), \\ Q_{0CA} = m^{(B)}(\delta) \cdot M + \\ +m^{(B)}(\delta) \cdot L \cdot (N-2) + (N-3), \\ Q_{PCA} = m^{(\Gamma)}(\delta) \cdot M \cdot L + \\ +m^{(\Gamma)}(\delta) \cdot (N-2) + (N-3). \end{cases}$$

Для оценки коэффициентов сжатия воспользуемся очевидными соотношениями

$$K_{CA}^{(CK)} = (N-2) \cdot M \cdot \frac{L}{Q_{CA}},$$
  

$$K_{OCA}^{(CK)} = (N-2) \cdot M \cdot \frac{L}{Q_{OCA}},$$
  

$$K_{PCA}^{(CK)} = (N-2) \cdot M \cdot \frac{L}{Q_{PCA}},$$

На рис.11-13 приведены графики, рассчитанные в соответствии с формулами (27-32).

### Выводы

Показано, что при одинаковом количестве используемых собственных векторов  $OCA^6$ предпочтительнее при сжатии ЭКГ, чем РСА, а РСА предпочтительнее СА. С учётом того, что для достижения заданной точности при использовании СА, ОСА и РСА необходимо разное число собственных векторов, ОСА будет иметь безусловное предпочтение при умеренной точности представления PQRSTцикла (при  $\delta$  or 0.02 до 0.05).

#### Литература

1. Исакевич В.В., Исакевич Д.В., Батин А.С. Патент РФ № 128470. Кардиоайгеноскоп. 09 августа 2012 г.

2. Исакевич В.В., Исакевич Д.В. Способ сжатия и воспроизведения ЭКГ. Патент РФ № 2746844. 8 ноября 2017 г.

3. Исакевич Д.В., Исакевич В.В. Кардиоайгеноскоп — новая полезная модель обработки электрокардиограмм. [Электронное издание]. — М. Издательство Перо, 2016. — 133 с., ISBN 978-5-906851-75-8

4. Исакевич Д.В., Исакевич В.В. Кардиоайгеноскопия 2022: Обзор, глоссарий, примеры и упражнения. [Электронное издание]. — М. Издательство Перо, 2022. — 114 с., ISBN 978-5-00204-251-7

5. Исакевич В.В., Исакевич Д.В., Сушкова Л.Т., Аль-Хадри В.А. Кардиоайгеноскопия: представление и анализ ЭКГ в базисах собственных векторов. 21-я Международная конференция «Цифровая обработка сигналов и её применение DSPA – 2019» Москва. 2019. с. 127-131. 6. Кендалл М., Стьюарт А. Статистические выводы и связи. Главная редакция физико-математической литературы изд-ва "Наука", 1973.- 899 с.

7. Исакевич Д.В.О рабочих характеристиках анализатора собственных векторов и компонент сигналов. «Проектирование и технология электронных средств», №3,2022. с.54-58. ISSN 2071-9809

8. Исакевич В.В., Исакевич Д.В., Аль-Хайдри В.А. Патент на полезную модель № 178010. Устройство формирования ансамбля кардиоциклов. 28 июня 2017 г.

9. The TB Diagnostic ECG Database-ThePTBDiagnosticECGDatabase- [Электронный ресурс].URL: http://www.physionet.org/physiobank/database/ptbdb/

10. Исакевич В.В., Исакевич Д.В., Сушкова Л.Т., Аль-Барати Б.С. Патент РФ на полезную модель № 162110. Устройство хранения и анализа ЭКГ. 23 июля 2015 г.

11. Исакевич В.В., Исакевич Д.В., Быстрицкий А.О. Патент РФ на полезную модель № 180638. Устройство хранения и автоматического анализа ЭКГ. 28 июня 2018 г.

## Поступила 22 мая 2023 г.

The article considers three ways of forming synchronous ensembles of cardiac oscillations during aigenoscopy and provides their comparative analysis.

*Key words:* cardioaigenoscopy; synchronous ensemble; combined synchronous ensemble; expanded synchronous ensemble; eigenvector; PQRST cycle.

*Р.М. Аббас* – аспирант кафедры «Электроника, приборостроение и биотехнические системы» ФГБОУ ВО «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых»

*E-mail*: riadabbas88@gmail.com

Ахмед Абдо Аль-Кавати – аспирант кафедры «Электроника, приборостроение и биотехнические системы» ФГБОУ ВО «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых».

*E-mail*: ahmedalqawati@gmail.com

*Косарева Ксения Валерьевна* – ведущий инженер ООО "Собственный вектор". *E-mail*: ksenia108@mail.ru

*L-mail*: ksella108@llall.ru

Адрес: 600005, г. Владимир, ул. Горького, 50.