УДК 621.396

Программный комплекс для анализа шумовых характеристик синтезаторов на основе ФАПЧ

Ромашова Л.В., Панков С.С.

В статье разработан алгоритм моделирования шумовых характеристик синтезаторов частот на основе фазовой автоподстройки частоты. Программный комплекс позволяет строить до 4 характеристик спектральной плотности мощности (СПМ) фазовых шумов в зависимости от начальных данных моделирования. В программе имеется встроенная база микросхем ФАПЧ и ФНЧ. Результаты моделирования могут выводиться отдельно в виде рисунка с необходимой информацией о параметрах построения.

Ключевые слова: синтезаторы частот, косвенный синтез частот, ФАПЧ, фазовый шум, программный комплекс.

Введение

Синтезаторы частот на основе косвенного метода синтеза имеют ряд преимуществ по сравнению с аналоговыми схемами. На выходе таких устройств, благодаря применению фильтра нижних частот (ФНЧ), получается более чистый спектр сигнала, при малых габаритах и уровне сложности исполнения.

Среди современных средств борьбы с акустическим шумом, с его активным распространением не последнее место занимают шумозащитные акустические экраны (АЭ). Существующее многообразие видов и конструкций экранов, стремление повысить эффективность защиты, требует проведения разнообразных исследований, позволяющих понимать характер распространения акустических сигналов в пространстве, влияние каких-либо элементов АЭ на эффективность их функционирования.

К существенным недостаткам схем синтезаторов на основе ФАПЧ можно отнести большое время перестройки, которое зависит от полосы пропускания фильтра, и высокий уровень фазовых шумов в сравнении с аналоговыми вариантами. Фазовый шум изменяется в пределах полосы пропускания фильтра и равняется $\lambda = \lambda_{PD} + 20 \log N$, где $\lambda_{PD} -$ суммарный уровень фазовых шумов опорного сигнала, частотного делителя, фазового детектора, усилителя цепи обратной связи и фильтра. Следовательно, уровень фазового шума напрямую зависит от коэффициента деления частотного делителя, величина кото-

рого может быть слишком высокой для обеспечения необходимого разрешения по частоте [1-3].

Для эффективного частотного планирования синтезаторов на основе ФАПЧ, требующего большого количества вычислений, а также для моделирования и поиска наименьшего уровня фазовых искажений целесообразным является разработка программного комплекса, который позволит автоматизировать процесс обработки информации и наглядно продемонстрировать результаты моделирования.

Целью данной работы является разработка алгоритма вычисления спектральной плотности мощности (СПМ) фазовых шумов синтезаторов на основе ФАПЧ и создание программного комплекса, позволяющего сравнивать и проводить анализ шумовых характеристик синтезаторов косвенного метода синтеза.

Алгоритм вычисления СПМ фазовых шумов синтезаторов на основе ФАПЧ

Косвенный метод синтеза использует принцип сравнения частоты и фазы сигнала на выходе, источником которого является генератор управляемый напряжением, с сигналом опорного генератора. Структурная схема такого синтезатора представлена на рис.1.

На структурной схеме применены обозначения: ГОЧ — генератор опорной частоты; ДЧ1, ДЧ2 — делители частоты с коэффициентами деления N_1 , N_2 ; ФД — фазовый дискриминатор; ФНЧ — фильтр

нижних частот; ГУН — генератор, управляемый напряжением с выходной частотой f_{BblX} .

Обнаружение ошибки осуществляется с помощью фазового детектора, определенной частоте f_{CP} , называемой частотой сравнения. Эта частота получается путем деления частоты опорного генератора $f_{\Gamma O^{\mathcal{H}}}$ на коэффициент N_{I} делителя частоты ДЧ1. Частота выходного сигнала f_{BMX} вначале делится на коэффициент N_2 делителя ДЧ2, а потом сравнивается с частотой f_{CP} . Если частота отклоняется, обнаруженная ошибка вызывает изменение управляющего напряжения ГУН. Зa счет изменения коэффициента деления осуществляется перестройка по частоте синтезатора на основе ФАПЧ.

В работах [4-6] приведена вся необходимая математическая база для проведения предварительного расчета параметров синтезаторов косвенного метода синтеза.

Исходными данными для вычисления являются:

- частота сигнала на входе, формируемая генератором опорной частоты $f_{\it \Gamma O \it Y}$;
- выходная частота, которая будет равняться частоте ГУН $f_{\mathit{BbIX}} = f_{\mathit{\GammaVH}}$;
- частота сравнения фазового детектора $f_{\mathit{CP}}.$

Параметры микросхемы ФАПЧ:

- максимально допустимая частота сравнения фазового детектора $f_{CP\max}$;
- максимальная и минимальная тактовая частота микросхемы ФАПЧ $f_{PLL\max}$, $f_{PLL\min}$

Предварительный расчет параметров синтезаторов на основе ФАПЧ

В начале алгоритма выбранная микросхема ФАПЧ проверяется на заданный диапазон частот, при котором $f_{\mathit{\Gamma}\mathit{VH}} \in (f_{\mathit{PLL}\min}...f_{\mathit{PLL}\max}),$ $f_{\mathit{CP}} \leq f_{\mathit{CP}\max}$.

Далее рассчитываются коэффициенты деления N_1 и N_2 :

$$N_1 = \frac{f_{\varGamma O \varPsi}}{f_{CP}} \; , \; N_2 = \frac{f_{\varGamma V H}}{f_{CP}} \; . \label{eq:N1}$$

Для продолжения моделирования необходимо найти передаточные функции кольца ФАПЧ по внешним и внутренним шумам. Сначала определим передаточную функцию фильтра иижних частот. В алгоритме используются 4 типа ФНЧ – 1 порядка, 2 порядка, 2 порядка AD и 3 порядка AD. В качестве примера приведен расчет для фильтра 2 порядка. Параметры базовых элементов для такого ФНЧ определяются следующим образом:

$$\begin{split} R_1 &= \pi f_{CP} \, \frac{1 + \frac{1}{\sin(\varphi)}}{K_0} \,, \ C_1 &= K_0 \, \frac{1 - \sin(\varphi)}{\left(2\pi f_{CP}\right)^2 \cos(\varphi)} \,, \\ C_1 &= K_0 \, \frac{\tan(\varphi)}{2\left(\pi f_{CP}\right)^2} \,, \end{split}$$

где $\, \varphi = 0.25 \, \pi \,$ - запас по фазе, $\, f_{CP} \,$ - частота среза ФНЧ, $\, K_0 \,$ - коэффициент

Постоянные времени:

$$T_1 = R_1 C_1, T_{21} = R_1 \frac{C_1 C_2}{C_1 + C_2}.$$

Теперь можно найти передаточную функцию фильтра, исходя из выражения:

$$K_{\phi H^{q}}(p) = K_0 \frac{pT_1 + 1}{p(pT_2 + 1)} \cdot \frac{1}{C_1 + C_2}.$$
 (1)

Передаточная функция разомкнутого кольца ФАПЧ:

 $H(p) = K_0 \frac{K_{\phi H^q}(p)}{N_2}.$ (2)

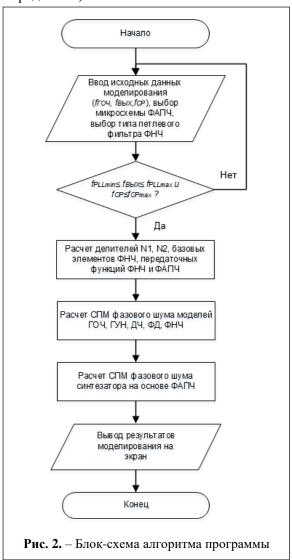
Передаточная функция ФАПЧ по внешним шумам:

$$H_{31}(p) = \frac{H_{11}(p)N_2}{1 + H_{11}(p)}.$$
 (3)

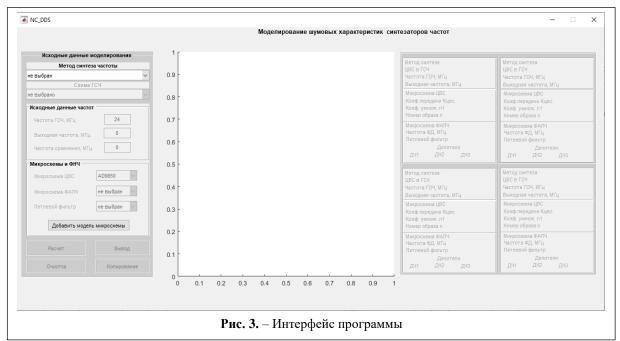
Передаточная функция ФАПЧ по внутренним шумам:

$$H_{32}(p) = \frac{1}{1 + H_{11}(p)}.$$
 (4)

Моделирование СПМ фазовых шумов синтезаторов на основе ФАПЧ осуществляется на основе математических моделей шумовых характеристик устройств [7-11]. Для проведения этой операции необходимо подставить значения параметров синтезатора, найденных в ходе предварительного расчета в соответствующие модели.


Программный комплекс для расчета СПМ фазовых шумов

Блок-схема алгоритма программы приведена на рис.2. После того как пользователь введет исходные данные для расчета, комплекс выполняет проверку условияработывыбранной микросхемы ФАПЧ в заданном диапазоне частот. Если условие верно, то выполняется предварительный расчет параметров синтезатора и передаточных функций ФНЧ и ФАПЧ. Далее вычисляются модели СПМ шума И итоговое фазового находится значение шумовой составляющей. Результаты моделирования в конце расчета выводятся на экран в виде графических зависимостей.

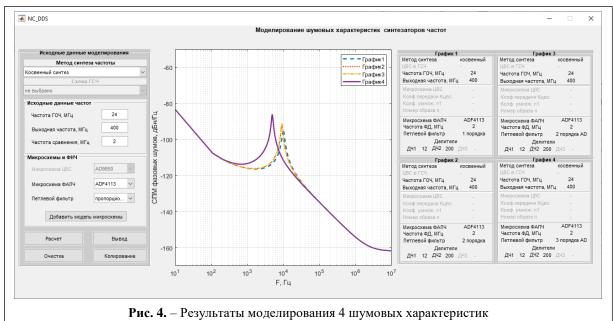

Интерфейс программы представлен на рис.3.

В левой части окна находится панель для задания исходных данных моделирования и панель для построения и редактирования полученных шумовых характеристик. При косвенном методе синтеза частоты необходимо также указать микросхему ФАПЧ и тип фильтра нижних частот из

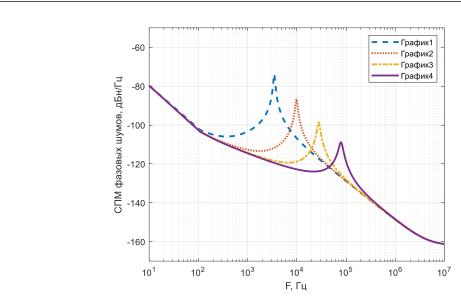
списка выпадающего меню. Программный комплекс предусматривает построение до 4 графиков шумовых характеристик на экране. рис.4 представлены результаты моделирования СПМ фазовых ШУМОВ косвенного метода синтеза частоты для модели ФАПЧ ADF4113 причастоте ГОЧ $f_{\Gamma O Y} = 24$ МГц, частоте сравнения $f_{CP} = 2$ $M\Gamma$ ц, выходной частоте $f_{gyx} = 400 M\Gamma$ ц и различныхтипах петлевых фильтров (пропорционально-интегрирующий 1 порядка, 2 порядка, 2 порядка AD и 3 порядка AD).

Информация по результатам построенных зависимостей содержится в правой части главного окна в специальных панелях.

На рис. 5 представлены результаты моделирования СПМ фазовых шумов для различных частот сравнения фазового детектора($f_{CP}=2,\,4,\,8,\,6$ МГц) при частоте ГОЧ $f_{\Gamma O Y}=32$ МГц, выходной частоте $f_{\rm sux}=800$ МГц, микросхеме ФАПЧ ADF4118 и интегрирующем фильтре 3 порядка AD.


Заключение

1. Разработанные алгоритмы позволяют реализовать расчет параметров синтезаторов на основе ФАПЧ.


2. На основе алгоритмов разработан программный комплекс для анализа шумовых характеристик синтезаторов косвенного метода синтеза частоты.

Литература

- 1. Рыжков, А.В. Синтезаторы частот в технике радиосвязи /А.В. Рыжков, В.Н. Попов. М.: Радио и связь, 1991. 264 с.
- 2. Белов, Л.А. Формирование стабильных частот и сигналов: Учеб. пособие для студ. высш. учеб. заведений / Л.А. Белов. М.: Издательский центр «Академия», 2005. 224 с.

- 3. Манассевич, В. Синтезаторы частот. Теория и проектирование: пер. с англ. / В. Манассевич; Под. ред. А. С. Галина. М.: Связь, 1979. 384 с.
- 4. Ромашов В.В., Ромашова Л.В., Храмов К.К. Шумовые характеристики формирователей сигналов на основе цифровых вычислительных синтезаторов и умножителей частоты // Радиопромышленность. 2012. № 2. С. 31-38.
- телекоммуникационные системы. 2013. № 1. С. 10-15.
- 8. Kroupa, V. Frequency Stability: Introduction and Applications / V. Kroupa.—Wiley and Sons, 2012. 303 p.
- 9. Drucker, E. Model PLL Dynamics and Phase-Noise Performance /E. Drucker // Microwaves & RF. November 1999. Pp. 69–84.

Информация о построении:

График 1 — Частота сравнения f_{CP} = 2 МГц, коэффициент деления N_1 = 16, N_2 = 400.

График 2 — Частота сравнения f_{CP} = 4 МГц, коэффициент деления N_1 = 8, N_2 = 200.

График 3 — Частота сравнения $f_{CP} = 8$ МГц, коэффициент деления $N_1 = 4$, $N_2 = 100$.

График 4 — Частота сравнения f_{CP} = 16 МГц, коэффициент деления N_1 = 2, N_2 = 50.

Рис. 5. – Результаты моделирования

- 5. Ромашов, В.В. Исследование шумовых характеристик гибридного синтезатора частот на основе однокольцевой ИФАПЧ со смесителем и цифрового вычислительного синтезатора / В.В. Ромашов, Л.В. Ромашова, К.А. Якименко // Радиотехнические и телекоммуникационные системы. 2013. №4. С. 23-29.
- 6. Ромашов, В.В. Разработка математического аппарата для частотного планирования гибридных синтезаторов частот / В.В. Ромашов, К.А. Якименко // Проектирование и технология электронных средств. 2016. No2. С. 3-9.
- 7. Ромашов В.В., Ромашова Л.В., Якименко К.А., Коровин А.Н. Моделирование шумовых характеристик гибридных синтезаторов частот на интегральных микросхемах // Радиотехнические и
 - Поступила 02 марта 2022 г.

- 10. Ромашова, Л.В. Математические модели шумовых характеристик интегральных синтезаторов с ФАПЧ / Л.В. Ромашова, В.В. Ромашов,К.К. Храмов, К.А. Якименко // Наука и образование в развитии промышленной,социальной и экономической сфер регионов России. VI Всероссийские научныеЗворыкинские чтения. Муром: ИПЦ МИ ВлГУ. 2014. С. 314-315.
- 11. Romashov V.V., Romashova L.V., Doctorov A.N. The mathematical model of noise characteristics of a direct digital synthesizer with the built-in multiplier of clock frequency on pll // В сборнике: 2015 International Siberian Conference on Control and Communications, SIBCON 2015 Proceedings 2015. C. 7147197.

The article developed an algorithm for modeling the noise characteristics of frequency synthesizers based on phase-locked loop. The software package allows you to build up to 4 characteristics of the spectral power density (PSD) of phase noise, depending on the initial simulation data. The program has a built-in base of PLL and low-pass filters. The simulation results can be displayed separately in the form of a picture with the necessary information about the construction parameters.

Key words: frequency synthesizers, indirect frequency synthesis, PLL, phase noise, software package.

Ромашова Любовь Владимировна — кандидат технических наук, доцент кафедры «Радиотехника» Муромского института (филиала) ФГБОУ ВО «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых.

E-mail: romashovamurom@mail.ru.

Панков Сергей Сергеевич — магистрант Муромского института (филиала) ФГБОУ ВО «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых.

E-mail: serega.pankov00@yandex.ru

Адрес: 602264, г. Муром, Владимирская обл., ул. Орловская, д.23.