Электродинамика и антенные системы

УДК 621.396.67

Корреляционный анализ результатов измерений радиотеплового излучения атмосферы СВЧ радиометрической системой с компенсацией фоновых шумов

Круглов А.С., Федосеева Е.В.

Приведены результаты корреляционной обработки данных измерений СВЧ радиометрической системы дистанционного зондирования атмосферы в условиях выпадения дождя.

Ключевые слова: дистанционное зондирование атмосферы, СВЧ радиометрическая система, корреляционная обработка результатов измерений.

Введение

Современные СВЧ радиометрические системы зондирования атмосферы позволяют наряду с другими измерительными средствами оценивать метеопараметры атмосферы и строить прогнозы изменения ее состояния [1-3]. Аналитическая взаимосвязь радиояркостной температуры, как характеристики интенсивности радиотеплового излучения атмосферы, и ее физических параметров базируется на уравнении переноса излучения [1], но в реальных условиях много случайных факторов все из которых учесть невозможно, поэтому при решении обратных задач оценки метеопараметров атмосферы приходится прибегать к методам статистического анализа, например, корреляционному и регрессионному [3].

При выполнении дистанционного зондирования атмосферы СВЧ радиометрическими системами важным вопросом является уменьшение влияния фонового излучения окружающего пространства на результаты измерений. Один из способов уменьшения такого влияния - реализация двухканального разностного приема с формированием на выходе дополнительного канала сигнала компенсации пропорционального помеховой составляющей основного измерительного сигнала [4-7].

Цель работы – выполнить корреляционный анализ результатов измерений трехдиа-

пазонной СВЧ радиометрической системы собственного радиотеплового излучения атмосферы с осадками.

Постановка задачи

Измерения собственного радиотеплового излучения атмосферы с осадками выполнялись трехдиапазонной СВЧ радиометрической системой, центральные частоты диапазонов которой 22 ГГц, 11 ГГЦ и 3,8 ГГц. Структурная схема СВЧ радиометрической системы представлена на рис.1 [5].

Одновременно с измерением уровня выходных сигналов СВЧ радиометрической системы портативной метеостанцией выполнялось измерение интенсивности дождя на уровне поверхности земли. Задача состояла к вычислении коэффициента корреляции между интенсивностью дождя и величиной выходных напряжений пяти каналов: основного и дополнительного на частотах 11ГГц и 3,8 ГГц и основного канала 22 ГГц системы, а также между интенсивностью дождя и разностной величиной выходных напряжений основного и дополнительного каналов на частотах 11 ГГц и 3,8 ГГц.

Результаты корреляционного анализа результатов измерений СВЧ радиометрической системы

Для выполнения численного анализа корреляционной зависимости уровней выходных сигналов СВЧ радиометрической системы зондирования атмосферы были взяты данные измерений при выпадении дождя полученные в июле 2017 года.

На рис.2 представлены записи во времени интенсивности дождя, на рис. 3 - уровней выходных сигналов трехдиапазонной СВЧ радиометрической системы 02.07.2017 года.

При выполнении корреляционного анализа зависимости между интенсивностью дождя и величиной выходных сигналов СВЧ радиометрической системы решались следующие задачи:

- вычисление коэффициента корреляции между интенсивностью дождя и величиной выходных сигналов основных измерительных каналов в трех частотных диапазонах работы СВЧ радиометрической системы;

- вычисление коэффициента корреляции между интенсивностью дождя и величиной выходных сигналов основных измерительных каналов в трех частотных диапазонах работы СВЧ радиометрической системы при делении исходных данных на два массивна: при интенсивности дождя менее 1 мм/час и более 1 мм/час;

- вычисление коэффициента корреляции между интенсивностью дождя и величиной разности выходных сигналов основных и дополнительных каналов в трех частотных диапазонах работы СВЧ радиометрической системы.

Результаты расчета коэффициентов корреляции для указанных трех задач приведены в Таблицах 1-4.

В Таблицах 1-4 приведены средние значения интенсивности дождя за весь период его выпадения в соответствующие сутки, коэффициенты корреляции между интенсивностью дождя и величиной выходных сигналов СВЧ радиометрической системы.

Приведенные результаты Таблиц 1-4 показали зависимость величины коэффициента корреляции между интенсивностью дождя и величиной выходного сигнала СВЧ радиометрической системы от средней интенсивности дождя, от частотного диапазона, в котором выполняется измерение собственного радиотеплового излучения атмосферы, и от выполнения компенсации помеховых составляющих входных сигналов системы при двухканальном приеме на частотах 11 ГГц и 3,8 ГГц. В целом, можно отметить усиление исследуемой взаимосвязи при разделении массивов данных для слабых и сильных дождей (менее и более 1 мм/час) и при расчете коэффициента корреляции по разностным величинам выходных сигналов СВЧ радиометрической системы при реализации процедуры компенсации влияния фоновых шумов.

Заключение

Полученные результаты корреляционного анализа показали наличие сложной многопараметрической зависимости выходных сигналов многочастотной СВЧ радиометрической системы дистанционного зондирования атмосферы от интенсивности дождя, что позволяет сделать вывод о эффективности применения СВЧ радиометрических систем в задачах оперативной оценки и прогнозирования состояния атмосферы в условиях выпадения осадков.

Литература

1. Степаненко, В.Д. Радиотеплолокация в метеорологии / В.Д.Степаненко, Г.Г. Щукин, Л.П. Бобылев, С.Ю. Матросов. - Л.: Гидрометеоиздат, 1987. - 283 с.

2. Ware R.A. A multichannel radiometric profiler of temperature, humidity, and cloud liquid // Radio Science. - 2003. - 38, 4, 8079.

3. Pranab Kumar Karmakar Ground-Based Microwave Radiometry and Remote Sensing. Methods and Applications, CRC Press 2013. Print ISBN: 978-1-4665-1631-1, eBook ISBN: 978-1-4665-1632-8.

4. Федосеева, Е.В. Компенсация помех в работе СВЧ радиометрических систем /Е.В. Федосеева, Г.Г. Щукин, И.Н. Ростокин, Е.А. Ростокина // Радиотехнические и телекоммуникационные системы. – 2014. - №1 (13) – с.50 – 62.

5. Ростокин, И.Н. Вопросы построения многочастотной СВЧ радиометрической системы дистанционного зондирования облачной атмосферы с компенсацией фонового излучения / И.Н. Ростокин, Е.В. Федосеева // Радиотехнические и телекоммуникационные системы. – 2015. -№1(17) – с.5 – 12.

6. Fedoseeva, E.V. An Estimate of the Error of Measurements of Radio Brightness Temperature in Radio-Heat Location Systems for Monitoring Meteorological Parameters with Background Noise Compensation // Measurement Techniques. – March 2015, Vol.57, Issue 12. – pp. 1463-1468.

7. Fedoseeva, E.V. Research mode dual-band antenna splitter dual-channel microwave radiometric system with compensation of background noise/ E.V.Fedoseeva, I.N.Rostokin, A.A. Fedoseev // 2015 International Siberian Conference on Control and Communications (SIBCON). Proceedings. - Omsk: Omsk State Technical University. Russia, Omsk, May 21-23, 2015. IEEE Catalog Number: CFP15794-CDR. ISBN: 978-1-4799-7102-2.

Таблица 1													
Дата, 2017 год		02.07	03.07	04.07	05.07	06	5.07	08.	07 09.	07	11.07	13.07	14.07
Среднее значение ин-													
тенсивности дождя,		7,5	0,9	0,3	2,1	0),3	1,	2 5,	7	0,3	1,2	1,2
мм/час													
Коэффициент корреляции интенсивности дождя и величины выходного сигнала													
основного измерительного канала													
3.8 ГГц		0,126	0,520	0,051	0,445	0,:	356	0,1	73 0,2	10	0,164	0,063	0,202
<u>11 ГГц</u>		0,199	0,348	0,032	0,388	0,2	289 0,3		06 0,0	27	0,144	0,149	0,476
		0,194	0,279	0,029	0,344	0,2	0,268 0,2		53 0,0	18	0,158	0,093	0,344
Таблица 2													
Дата, 2017 год	02.07	03.07	04.07	05.0	7 06.	07	08.	.07	09.07	1	1.07	13.07	14.07
Среднее значе-													
ние интенсив-	7.5	0.9	0.3	2.1	0.	3	3 1,2		5.7		0.3	1.2	1.2
ности дождя,	,,,0	0,99	0,0	_,1		2			0,,		0,5		1,2
мм/час													
Коэфо	рициент	корреляі	ции инто	енсивно	сти дох	кдя і	и вел	ичи	ны выхо	одно	ого сиг	нала	
основного измерительного канала при интенсивности менее 1 мм/час													
<u>3.811ц</u>	0,142	-	-	0,37	4 -		0,007		0,015		-	0,036	-
	0,160	-	-	- 0,26		-		0,008 0,		_	-	0,310	-
		-	-	0,35	0 -		0,008		0,026		-	0,181	-
Таолица 3	02.07	02.07	04.07	05.0	7 00	07	00	07	00.07	1	1.07	12.07	14.07
Дата, 2017 год	02.07	03.07	04.07	05.0	/ 06.	07 08.		.07	09.07		1.07	13.07	14.07
Среднее значе-						0,3			5,7		0,3	1,2	
ние интенсив-	7,5	0,9	0,3	2,1	0,			,2					1,2
ности дождя,													
Koodd	huuueuru	корреци		elicuplic		ипа						цапа	
основного измерительного канала при интенсивности дождя и величины выходного сигнала													
3.8 ГГц	0,355	-	-	0,04	2 -		0,191		0,224		-	0,221	-
11 ГГц	0,360	-	-	0,24	5 -		0,3	13	0,408		-	0,194	-
22 ГГц	0,309	-	-	0,59	8 -		0,264		0,438		-	0,318	-
Таблица 4													
Лата, 2017 год	02.07	03.07	04.07	05.0	7 06.	07	08.	.07	09.07	1	1.07	13.07	14.07
Среднее значе-													
ние интенсив-		0.0	0.2	0.1	0	2	1	•			0.2	1.0	1.0
ности дождя,	7,5	0,9	0,3	2,1	0,	3	1,	,2	5,7		0,3	1,2	1,2
мм/час													
Коэффициент ко	рреляци	и интенс	ивности	и дождя полните	и вели	чинь кана	ы раз	ност	ти выход	цны	х сигна	алов осн	овного
3.8 FF11	3.8 ГГи 0.170 0.508 0.160 0.303 0.0					69	04	02	0.049	0	.110	0.044	0.579
11 FFm	0.396	0.065	0.128	0.22	$\frac{2}{4}$ 0.2	09	0.1	41	0.477	0	.001	0.206	0.402
22 ГГц	0,303	0,010	0,103	0,17	4 0.2	07	0,1	40	0,379	0	,040	0,124	0,430

Поступила 22 марта 2018 г.

The results of correlation processing of measurements of microwave radiometric system of remote sensing of the atmosphere under rain conditions are presented.

Key words: remote sensing of the atmosphere, microwave radiometric system, correlation processing of measurement results.

Федосеева Елена Валерьевна – доктор технических наук, профессор кафедры радиотехники Муромского института (филиала) ФГБОУ ВО «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых».

Круглов Андрей Александровна – магистрант факультета радиоэлектроники и компьютерных систем Муромского института (филиала) ФГБОУ ВО «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых».

Адрес: 602264, г. Муром, ул. Орловская, д. 23.